
The Cyber Resilience Act and Open-Source Software: A Fine Balancing Act

202573 1

The Cyber Resilience Act and Open-
Source Software: A Fine Balancing Act
by Mattis van ‘t Schip *

© 2025 Mattis van ‘t Schip

Everybody may disseminate this article by electronic means and make it available for download under the terms and
conditions of the Digital Peer Publishing Licence (DPPL). A copy of the license text may be obtained at http://nbn-resolving.
de/urn:nbn:de:0009-dppl-v3-en8.

Recommended citation: Mattis van ‘t Schip, The Cyber Resilience Act and Open-Source Software: A Fine Balancing Act, 16
(2025) JIPITEC 73 para 1.

Keywords: Open-Source Software; Cybersecurity; Cyber Resilience Act

is often equally as critical as software created and
maintained by larger technology enterprises.

The Cyber Resilience Act, the recently proposed Eu-
ropean cybersecurity legislation for products, aims
to offer a legal response to cybersecurity problems
in modern software and hardware. This paper ad-
dresses the role of open-source software cybersecu-
rity in the Cyber Resilience Act with specific attention
to the difficulties of reconciling cybersecurity respon-
sibilities and open-source products. I show that the
Cyber Resilience Act does achieve a balance between
regulation for open-source software and advancing
cybersecurity, but only through a narrowly applicable
and, at times, complex legislative approach.

Abstract: Open-source software, a type of
software that can be publicly accessed, shared, and
modified, is an integral part of modern digital infra-
structure. Many products, from personal computers
to internet-connected devices, run on open-source
systems (e.g., Linux). Developers may work volun-
tarily or for limited compensation on such software.
The character of this work, however, does not reduce
the impact of cybersecurity incidents within these
environments. Proprietary software, meaning soft-
ware with restrictive license models, regularly im-
plements open-source software: a vulnerability in
the open-source software thus directly affects pro-
prietary software too. Recent large-scale vulnerabil-
ities (e.g., Log4j) highlighted this dual nature of open-
source software: developers work on projects based
on personal passion or ideologies, while the software

A. Introduction

1 Behind the facade of giant technology enterprises
exists an ecosystem of ‘open-source software’.
The source code of this type of software is
publicly accessible and developers write the code
under licenses that allow for use, redistribution,
modification, and sharing by third parties. ‘Open
source’ does not merely mean public access to
source code. The Open Source Initiative (OSI), a body
responsible for the generally accepted definition
of ‘open source’, indicates that the concept holds
certain additional criteria.1 For instance, open-

* Ph.D. Candidate at the Interdisciplinary Research Hub
on Digitalization and Society (iHub), Radboud University.
This research is funded through the NWO INTERSCT
project [NWA.1160.18.301].

1 Open Source Initiative, ‘The Open Source Definition’ (22
March 2007) <https://opensource.org/osd> accessed 19

source software licenses should not discriminate
based on intended use.2

2 Many types of open-source software support
today’s largest software packages: Linux, an open-
source operating system, powers many modern ICT
products, from desktop computers to Internet of
Things devices; millions of websites rely on Apache,
an open-source web server. Open-source software is
thus an important cornerstone of the modern digital
infrastructure.3

3 The advantages of open-source software align with
recent regulatory efforts in the EU that aim to curtail
the market power of the major digital enterprises.
For instance, the Digital Services Act regulates online

January 2024.
2 <https://opensource.org/licenses/>.
3 Chinmayi Sharma, ‘Tragedy of the Digital Commons’ (2023)

101 North Carolina Law Review 1129.

2025

Mattis van ‘t Schip

74 1

platforms (and especially the “very large” online
platforms, i.e., the major social media platforms),
while the Digital Markets Act imposes responsibilities
on “gatekeepers” (e.g., Microsoft, Meta).4 Open-
source software can serve as a transparent, public
alternative to these dominant platforms.

4 Like other types of software, open-source software
comes with cybersecurity risks.5 For example,
Log4j, a piece of open-source software for logging
purposes, suffered a critical vulnerability which
allowed hackers to remotely access systems.6
Some experts held that the vulnerability affected
virtually every digital service globally.7 The Log4j
vulnerability was critical because open-source
software is often incorporated in larger proprietary
software packages; the vulnerability in Log4j thus
directly affected numerous other products.8

5 In September 2022, the European Commission
introduced a new legislative proposal for the
cybersecurity of software and hardware products,
the Cyber Resilience Act.9 At the end of 2024, the Act

4 Regulation (EU) 2022/2065 of the European Parliament
and of the Council of 19 October 2022 on a Single Market
For Digital Services and amending Directive 2000/31/EC
[2022] OJ L277/1 (Digital Services Act); Regulation (EU)
2022/1925 of the European Parliament and of the Council
of 14 September 2022 on contestable and fair markets in the
digital sector and amending Directives (EU) 2019/1937 and
(EU) 2020/1828 [2022] OJ L265/1 (Digital Markets Act).

5 Jaap-Henk Hoepman and Bart Jacobs, ‘Increased Security
through Open Source’ (2007) 50 Communications of the
ACM 79.

6 For an extensive overview, see Raphael Hiesgen and others,
‘The Log4j Incident: A Comprehensive Measurement Study
of a Critical Vulnerability’ [2024] IEEE Transactions on
Network and Service Management 1.

7 Sean Lyngaas, ‘US Warns Hundreds of Millions of Devices
at Risk from Newly Revealed Software Vulnerability’ (CNN,
13 December 2021) <https://www.cnn.com/2021/12/13/
politics/us-warning-software-vulnerability/index.
html> accessed 19 January 2024; Ars Technica spoke
of ‘arguably the most severe vulnerability ever’, see
Dan Goodin, ‘As Log4Shell Wreaks Havoc, Payroll
Service Reports Ransomware Attack’ (Ars Technica, 13
December 2021) <https://arstechnica.com/information-
technology/2021/12/as-log4shell-wreaks-havoc-payroll-
service-reports-ransomware-attack/> accessed 19 January
2024; Similarly, see the Guardian Associated Press, ‘Recently
Uncovered Software Flaw “Most Critical Vulnerability
of the Last Decade”’ The Guardian (11 December 2021)
<https://www.theguardian.com/technology/2021/dec/10/
software-flaw-most-critical-vulnerability-log-4-shell>
accessed 19 January 2024.

8 Sharma (n 4) 1131–1133.
9 Proposal for a Regulation of the European Parliament and

of the Council on horizontal cybersecurity requirements for
products with digital elements and amending Regulation

came in effect.10 The Act applies when manufacturers
and/or software developers place software or
hardware products on the market of the European
Union “in the course of a commercial activity”.11 If
they place these products on the market, software
developers must implement certain cybersecurity
requirements in their product and, in certain cases,
follow strict assessment procedures.

6 Although this requirement potentially excludes
open-source software, the ‘commercial activity’
condition offers few assurances, as evident
from the legislative discussions surrounding its
interpretation.12 The commerciality of open-source
software projects can range from monetising other
services on the open-source software platform (e.g.,
Android) to occasional donations from end users
(e.g., hobby projects).13 The Commission proposal
merely mentioned these examples, but did not offer
a further clarification of what “supplying in the
course of a commercial activity” entails.

7 The text adopted by the Parliament, instead, includes
a rather comprehensive set of Recitals, which cover
many open-source software development and
financing methods. The compromise text therefore
exempts nearly every known type of open-source
software development from the scope of the Cyber
Resilience Act. This exemption helps developers,
who do not have to comply with legal burdens for
software that they provide openly to the public.

(EU) 2019/1020 COM(2022) 454 final [Cyber Resilience Act].
10 Regulation (EU) 2024/2847 of the European Parliament

and of the Council of 23 October 2024 on horizontal
cybersecurity requirements for products with digital
elements and amending Regulations (EU) No 168/2013 and
(EU) No 2019/1020 and Directive (EU) 2020/1828 (Cyber
Resilience Act) [2024] OJ L (to be published).

11 Art 3(22) CRA.
12 See the calls for support from the open source community

when the Cyber Resilience Act proposal was published in,
inter alia, Maarten Aertsen, ‘Open-Source Software vs.
the Proposed Cyber Resilience Act’ (The NLnet Labs Blog,
14 November 2022) <https://blog.nlnetlabs.nl/open-
source-software-vs-the-cyber-resilience-act/> accessed
20 December 2023; Deb Nicholson, ‘Python Software
Foundation News: The EU’s Proposed CRA Law May Have
Unintended Consequences for the Python Ecosystem’
(Python Software Foundation News, 11 April 2023) <https://
pyfound.blogspot.com/2023/04/the-eus-proposed-cra-
law-may-have.html> accessed 20 December 2023; Simon
Phipps, ‘What Is the Cyber Resilience Act and Why It’s
Dangerous for Open Source’ (Voices of Open Source, 24 January
2023) <https://blog.opensource.org/what-is-the-cyber-
resilience-act-and-why-its-important-for-open-source/>
accessed 20 December 2023.

13 David A Wheeler, ‘F/LOSS Is Commercial Software’ [2009]
Open Source Business Resource <http://timreview.ca/
article/229>.

The Cyber Resilience Act and Open-Source Software: A Fine Balancing Act

202575 1

At the same time, these broad exemptions could
undermine the overall aim of the Cyber Resilience
Act to improve the state of cybersecurity for software
and hardware.

8 This paper analyses the difficulties of reconciling
open-source software development with
cybersecurity risk management responsibilities. The
research question is: To what extent does the Cyber
Resilience Act impose responsibilities on open-source
software developers that achieve a balance between
stimulating open-source software development and,
simultaneously, mitigating cybersecurity problems
within open-source software?

9 This paper proceeds as follows: Section B summarises
the history and meaning of open-source software and
its cybersecurity implications. Section C discusses
the Cyber Resilience Act, with specific attention to
the definition of supplying a product ‘in the course
of a commercial activity’ for open-source software
products. Section D highlights, using several
examples, how difficult an assessment of ‘supplying
in the course of a commercial activity’ is under the
current legal terminology in the Recitals. Section E
then looks at specific rules pointed at open-source
software within the Cyber Resilience Act, such as
the special regulatory regime for ‘open-source
software stewards’. Based on this legal framework,
Section F questions whether the Cyber Resilience
Act now achieves a balance between encouraging
open-source software development and mitigating
cybersecurity problems. Based on this balance,
Section G looks at the future of open-source software
under EU law. Section H concludes.

B. Open-Source Software

10 Open-source software originates from an academic
environment. At MIT, Richard Stallman intended
to design a free operating system that opposed the
barriers developing against sharing software in
the 1980’s.14 To support the GNU project, Stallman
established the Free Software Foundation (FSF).
The FSF focused on free access and usability of
software (‘a matter of liberty’15) instead of ‘free
of charge’ software.16 A decade later, the quickly
growing community surrounding ‘free software’
moved towards a new label: ‘open source’. The

14 Richard Stallman, ‘Initial Announcement’ (GNU, 27
September 1983) <https://www.gnu.org/gnu/initial-
announcement.html> accessed 19 January 2024.

15 ‘What Is Free Software? - GNU Project - Free Software
Foundation’ <https://www.gnu.org/philosophy/free-sw.
html.en> accessed 13 January 2025.

16 Moreno Muffatto, Open Source: A Multidisciplinary Approach
(Imperial College Press 2006) 7.

‘free’ label was unattractive to many companies,
which prevented larger enterprises from becoming
involved in the development of ‘free’ software.17
Therefore, under the Open Source Initiative, the
community created a definition for ‘open-source’
software next to ‘free’ software.18

11 Open-source software is a type of software with
source code that is publicly accessible. The
use of open-source software comes with some
requirements, which different developers have
formalised in specific licenses.19 Some developers, for
instance, specify that users accept that they receive
the software ‘as-is’, so that the developers cannot
be held liable for damages caused by the software.20
At the same time, the licenses also formalise that
the developers cannot discriminate based on the
envisioned use of the software: any type of user (e.g.,
large technology companies, hobby developers) can
freely access and use the code how they desire (e.g.,
modification, sharing).21

12 This Section analyses open-source software and
its unique characteristics in comparison to its
counterpart, proprietary/closed-source software. In
addition, the Section highlights the cybersecurity
characteristics of both software development
methods.

I. The Development and Ideologies
of Open-Source Software

13 Open-source software is published on a diverse set of
platforms by equally diverse developers. Developers
participate to different degrees (e.g., occasional
code change to full-time work), receive different
types of remuneration (e.g., full salary, donations),
and contribute based on diverse motivations (e.g.,
passion, peer recognition). This diversity laid the
groundwork for ‘open source’ as a community
of people involved with all types of projects that
aim at providing open access to information and
knowledge, such as open-source software and open
access science.

14 The counterparts to open-source software exists
in two forms: proprietary software (restrictive

17 ‘History of the OSI’ (Open Source Initiative, 19 September
2006) <https://opensource.org/history/> accessed 19
January 2024.

18 Open Source Initiative (n 2); Muffatto (n 17) 14.
19 P McCoy Smith, ‘Copyright, Contract, and Licensing in Open

Source’ in Amanda Brock (ed), Open Source Law, Policy and
Practice (2nd edn, Oxford University Press 2022).

20 See, as an example, the 1-clause BSD license: <https://
opensource.org/license/bsd-1-clause>.

21 Open Source Initiative (n 2).

2025

Mattis van ‘t Schip

76 1

licensing) and closed-source software (restricted
access to source code). Proprietary software works
with licenses that severely restrict the user in their
use of the software (e.g., no modifying the source
code). Proprietary software can thus also be open-
source software, as software with publicly accessible
source code but a restrictive license.22 In addition,
proprietary software exists as closed-source
software, where the source code is not available
and the license restricts the user. Open-source or
closed-source software is thus a choice during the
development phase of a software package, while
proprietary software refers to the distribution phase.

15 The dichotomy between open-source and
proprietary/closed-source software can be
illustrated through the Linux and Microsoft
Windows operating systems: Linux is an open-
source operating system, with many different
versions existing today, because the license allows
modification of the code (e.g., Linux Mint, Ubuntu,
Arch Linux).23 Microsoft develops the proprietary
and closed-source Windows operating system; its
source code is not publicly available and its license
restricts any modification to the Windows source
code. Microsoft thus solely develops and controls
the different Windows versions.

16 Open-source software exists in many forms. Linux
is a prominent example because, as a popular
operating system, it has millions of users. However,
open-source software also exists on a smaller
scale, for example as a small web app that maybe a
hundred people may use. When the software license
complies with the open source definition of the Open
Source Initiative (OSI),24 the open source community
considers it open-source software.25

17 There is no singular form of organization behind
open-source software development.26 Since open-
source software is usually – but certainly not always
– free for users, open-source software developers
often rely on smaller financial resources to build
their software. Open-source developers often have
other intrinsic and extrinsic motives. Intrinsic
motives rely on “the tendency to seek out novelty
and challenges” (e.g., improving knowledge of a
certain programming language), while extrinsic
motives focus on the outcome of certain conduct

22 For some examples, see <https://en.wikipedia.org/wiki/
List_of_proprietary_source-available_software>.

23 For an extensive list of Linux distributions, see <https://
en.wikipedia.org/wiki/List_of_Linux_distributions>.

24 <https://opensource.org/licenses/>.
25 This does not mean that there are no open-source software

licenses outside the OSI’s list, but merely that the OSI has
not (yet) classified them as compliant with the open source
definition.

26 Muffatto (n 17) ch 3.

(e.g., improving reputation among peers in the
development community).27 Some developers
therefore band together under a non-commercial
entity and offer technical support to their largest
users for a fee, while other developers work on
projects completely voluntarily or based on small
donations from end users.

18 In connection to the structure of different open-
source software, the users of the software differ
considerably, as anyone can access the software’s
source code. Major technology enterprises frequently
use open-source software as a foundation on which
they build their proprietary software packages;
individuals might instead use open-source software
because of its lower cost or as an alternative to the
monopoly power of large technology enterprises.28

19 In line with these different structures and users
of software, I identify three types of open-source
software projects: 1) a standalone open-source
project (e.g., a developer publishing some personal
code); 2) open-source software incorporated into
other proprietary and/or open-source software
(e.g., Log4j);29 3) commercialized open-source
software (e.g., where the organisation requires a fee
for usage).30 The difference between a standalone
project (1) and an integrated project (2) largely
relies on the use case of the software package,
since some packages do not offer standalone
functionalities.31 Section C illustrates the meaning
of this categorization within the legal framework of
the Cyber Resilience Act.

20 Open-source developers often publish the source
code of their software on online repositories (e.g.,
GitHub, SourceForge, personal websites). Other
developers can access the code there, and download
it for further use, or review the code and offer

27 Jürgen Bitzer, Wolfram Schrettl and Philipp JH Schröder,
‘Intrinsic Motivation in Open Source Software Development’
(2007) 35 Journal of Comparative Economics 160; Muffatto
(n 17) 58–62.

28 Muffatto (n 17) 62–64.
29 For instance, on Microsoft’s evolving stance towards open-

source software, see Benjamin J Birkinbine, Incorporating the
Digital Commons: Corporate Involvement in Free and Open Source
Software (University of Westminster Press 2020) 49–72.

30 RedHat is the most prolific example of such projects, see also
ibid 73–88; Although Red Hat recently changed its company
policies, to the dismay of the open source community, Kevin
Purdy, ‘Red Hat’s New Source Code Policy and the Intense
Pushback, Explained’ (Ars Technica, 30 June 2023) <https://
arstechnica.com/information-technology/2023/06/red-
hats-new-source-code-policy-and-the-intense-pushback-
explained/> accessed 13 December 2023.

31 The Cyber Resilience Act also speaks of certain types of
open-source software ‘intended for integration by other
manufacturers’. Recital 18 CRA.

The Cyber Resilience Act and Open-Source Software: A Fine Balancing Act

202577 1

feedback.32

21 Open-source software is part of the broader
‘open source’ movement, which is based on
certain philosophical (e.g., about information
and knowledge) or pragmatic beliefs (e.g., free
alternatives for users) about the need for open-
source software.33 These beliefs explain the altruistic
nature of open source and relate back to the Free
Software Foundation: many developers offer their
software to the public because they are part of a
wider community movement which aims to keep
knowledge, in a broad sense, publicly accessible and
shareable.34

II. Open-Source Software
and Cybersecurity

22 Open-source software represents a deliberate choice
for transparency: the source code of the software
is accessible and the developers are transparent
about its inner workings. An alternative to such
transparency is ‘security through obscurity’.35 This
dichotomy between ‘transparency’ and ‘obscurity’
forms the foundation for many security-related
discussions about open-source software.36

23 By hiding the inner workings of the software,
closed-source software does not show its internal
processes; attackers cannot view the source code
to discover exploitable vulnerabilities.37 In contrast,
advocates for open-source software development
believe transparency allows open-source software
to be more secure.38 In the following, I illustrate the

32 GitHub had more than 400 million contributions to open-
source projects in 2022. See <https://github.blog/news-
insights/research/octoverse-2022-10-years-of-tracking-
open-source/>.

33 Ian Walden, ‘Open Source as Philosophy, Methodology,
and Commerce: Using Law with Attitude’ in Amanda Brock
(ed), Open Source Law, Policy and Practice (2nd edn, Oxford
University Press 2022).

34 Charlotte Hess and Elinor Ostrom (eds), Understanding
Knowledge as a Commons: From Theory to Practice (MIT Press
2007).

35 Hoepman and Jacobs (n 6).
36 Charles-H Schulz, ‘Open Source Software and Security:

Practices, Governance, History, and Perceptions’ in Amanda
Brock (ed), Open Source Law, Policy and Practice (2nd edn,
Oxford University Press 2022); Christian Payne, ‘On the
Security of Open Source Software’ (2002) 12 Information
Systems Journal 61.

37 Ross Anderson, ‘Open and Closed Systems Are Equivalent
(That Is, in an Ideal World)’ in Joseph Feller and others (eds),
Perspectives on free and open source software (MIT Press 2005).

38 Eric Raymond, ‘The Cathedral and the Bazaar’ (1999) 12
Knowledge, Technology & Policy 23.

security dynamics of open-source and closed-source
software in two phases: 1) during the development of
the software and 2) after publication of the software.

1. Development of Software

24 Proponents often use the transparent nature of
open-source software as an argument that open-
source software is more secure; if developers can
peer review source code, they can identify and patch
vulnerabilities and similar problems quickly.39

25 Raymond coined this view of security of open source
code as ‘Linus’ Law’: “Given a large enough beta-
tester and co-developer base, almost every problem
will be characterized quickly and the fix obvious to
someone.”40 Thus, an open-source software package
is more secure if – and only if – many developers
view and co-operate on the source code as the
project benefits from their diverse views.41

26 The prevention of backdoors is an example of the
benefits of the ‘many eyeballs’ system. If attackers
change the source code of open-source software to
allow themselves backdoor access to the system, or if
the backdoor existed from the start, other developers
can easily notice such changes and prevent the
attackers from exploiting the backdoor.42 This is
not the case for closed-source systems, where such
backdoors are not immediately visible to others.

27 An opposing view to the ‘many eyeballs’ principle
of Linus’ Law is the view of ‘too many cooks in
the kitchen’.43 In the latter view, the security of
open-source software diminishes because too
many developers are working on the software
simultaneously and in fragmented ways.44 A single
developer may decide to contribute solely to
their preferred elements of the project, without

39 ibid.
40 ‘Linus’ refers to the founder of the Linux operating system,

Linus Torvalds. Raymond also more informally coins Linus’
Law as “Given enough eyeballs, all bugs are shallow”, see
ibid 29.

41 Raymond (n 38).
42 Payne (n 36) 66–67.
43 Andrew Meneely and Laurie Williams, ‘Secure Open Source

Collaboration: An Empirical Study of Linus’ Law’, Proceedings
of the 16th ACM conference on Computer and communications
security (ACM 2009) 453; Ann Barcomb and others, ‘Managing
Episodic Volunteers in Free/Libre/Open Source Software
Communities’ (2022) 48 IEEE Transactions on Software
Engineering 260.

44 Martin Pinzger, Nachiappan Nagappan and Brendan
Murphy, ‘Can Developer-Module Networks Predict
Failures?’, Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering (ACM 2008).

2025

Mattis van ‘t Schip

78 1

contributing to the overall project goals. This
‘unfocused contribution’ forms a security risk.45
Unfocused contributions disrupt the concept of
Linus’ Law in large-scale open-source projects, as
the additional ‘eyeballs’ do not necessarily improve
the project.46 Therefore, the idea that open-source
software is more secure simply because a diverse
set of developers can access the source code is not
clearly proven.

2. Post-Release Vulnerabilities

28 Linus’ Law mainly relates to the development phase
of open-source software projects. However, security
problems can also develop in the post-release phase,
after publication of the software or a new version
release.

29 In a comprehensive study, Schryen found that there
was no statistical significance in terms of the severity
of vulnerabilities between open-source and closed-
source software equivalents.47 He also found that
the type of patching behaviour, in terms of speed
and type of vulnerabilities, differed significantly
between different open-source and closed-source
vendors. This difference existed across open-source
and closed-source vendors: the mode of open-source
or closed-source development seemed, therefore,
not to influence patching behaviour.48

30 Ransbotham analyses how threat actors exploit
vulnerabilities differently between open-source and
closed-source projects based on two years of log data
from intrusion detection systems.49 He holds that
vulnerabilities of open-source software projects have
a generally greater risk of exploitation and receive
more exploitation attempts. These differences can be
partially attributed to the difference in transparency
between open- and closed-source software. If a
vulnerability is discovered internally in a closed-
source environment, the developers have some
additional time to work on fixing the vulnerability
before they make the changes public. In open-source
projects, changes in the source code – and thus

45 Meneely and Williams (n 43) 456.
46 Meneely and Williams (n 43); Andrew Meneely and Laurie

Williams, ‘Strengthening the Empirical Analysis of the
Relationship between Linus’ Law and Software Security’,
Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement (ACM 2010).

47 Guido Schryen, ‘Is Open Source Security a Myth?’ (2011) 54
Communications of the ACM 130, 136–137.

48 ibid 139.
49 Sam Ransbotham, ‘An Empirical Analysis of Exploitation

Attempts Based on Vulnerabilities in Open Source Software’
[2010] Workshop on the Economics of Information Security
1.

possible vulnerabilities – are immediately publicly
accessible.50

31 In general, there are thus small differences between
open-source and closed-source software security,
both in the development and post-release phase.
Vulnerabilities exist in and impact both types of
software.

C. The Cyber Resilience
Act and Open-Source
Software Cybersecurity

32 European law did not consider cybersecurity
rules for open-source software until 2022. This
lack of regulation changed when the European
Commission proposed the ‘Cyber Resilience Act’,
which contained specific rules for open-source
software cybersecurity.51 The Cyber Resilience Act
was adopted at the end of November 2024 and comes
into effect on 10 December 2024.52

I. The Cyber Resilience Act in Short

33 The Cyber Resilience Act imposes 1) cybersecurity
requirements on 2) manufacturers of 3) products with
digital elements that they 4) place on the Union’s
market in the course of a 5) commercial activity.53
Below, I briefly review these elements in light of the
applicability of the Act to open-source software.54

1. Cybersecurity Requirements

34 The cybersecurity requirements for products with
digital elements form the focal point of the Cyber
Resilience Act. These requirements include security
throughout the lifecycle of the product (security-
by-design), releasing the product without known
exploitable vulnerabilities, and protection of the
integrity and authenticity of data.55 Next to these
requirements, the Act contains traditional product
requirements (e.g., providing documentation) and
security-specific duties (e.g., providing security

50 ibid 5.
51 Cyber Resilience Act proposal (n 10).
52 Cyber Resilience Act (n 11).
53 Art 1 CRA.
54 See also Liane Colonna, ‘The End of Open Source? Regulating

Open Source under the Cyber Resilience Act and the New
Product Liability Directive’ (2025) 56 Computer Law &
Security Review 106105.

55 Annex I Part 1 CRA.

The Cyber Resilience Act and Open-Source Software: A Fine Balancing Act

202579 1

updates).56

35 There are two main methods for developers to show
their compliance in the proposal: 1) performing a
self-assessment; and 2) receiving a third-party
audit.57 In general, the choice for a specific route
depends on the type of product. The Cyber Resilience
Act categorises products with certain privileges
in networks or computer systems (e.g., password
managers, operating systems) as ‘important’
products.58 Important products must, if they cannot
follow certain European technical standards, perform
a third-party audit to prove their compliance with
the Act’s requirements.59 Open-source software is
exempted from a third-party audit, even if they are
considered ‘important products’, as long as they
provide technical documentation to the public.60

36 The provision and the supporting Recital do not
indicate a reason for this exemption. However,
many open-source software packages have certain
elevated privileges and would therefore be important
products (e.g., Log4j). In that context, the Parliament
and Council most likely wanted to prevent a ‘chilling
effect’ on open-source software development in the
face of possibly costly third-party audits.

37 A further category exists for ‘critical’ products with
digital elements, with even stricter conformity
requirements.61 The Act currently lists three critical
products: hardware devices with security boxes;
smart meter gateways; and smartcards.62

2. Manufacturers

38 A manufacturer is a “natural or legal person
who develops or manufactures products with
digital elements”.63 Both traditional hardware
manufacturers and software developers are
‘manufacturers’ under the Cyber Resilience Act.
In case manufacturers do not strictly produce the
product themselves, but place their trademark on
products produced by another actor, they remain
the manufacturer of the final product.64

39 As highlighted above, not all open-source software

56 Art 13 CRA.
57 Art 32(1) CRA.
58 Art 7(1) CRA & Annex III CRA. The Commission proposal

used the term ‘critical’ products, which is now an even more
critical class above important products.

59 Art 32(2) CRA.
60 Art 32(5) & Recital 91 CRA.
61 Art 8 & Art 32(4) CRA.
62 Annex IV CRA.
63 Art 3(13) CRA.
64 Art 3(13) CRA.

forms a standalone package. Some of the most
prominent open-source software packages derive
their popularity from integration by proprietary
software developers. Google, for instance, uses
numerous pieces of open-source software, such as
databases,65 for their own software packages (e.g.,
Google Maps). Google, in this example, creates
and markets their end product and is thus the
manufacturer for the end product under the Cyber
Resilience Act.66 The proprietary developers must
thus also ensure that they securely integrate the
open-source database system – the open-source
developer is not responsible for compliance in this
case.67 I delve into this separation further in Section
E.II.

40 The Cyber Resilience Act includes a set of rules for
importers and distributors too. These rules ensure
that manufacturers cannot evade compliance
by letting importers and distributors bring the
product to the Union market.68 An importer brings
products with digital elements to the Union market
of “a natural or legal person established outside
the Union.”69 A distributor is an actor that is not a
manufacturer or importer, but who still places the
product on the market.70 Importers and distributors
have separate responsibilities to ensure that the
products they place on the Union market comply
with the requirements of the Cyber Resilience Act.71

3. Product with Digital Elements

41 The provisions of the Cyber Resilience Act apply
to ‘products with digital elements’, meaning “any
software or hardware product”.72 Open-source
software is thus a ‘product with digital elements’
if: 1) the open-source project develops software or
hardware; and 2) that software or hardware is a
product under the Cyber Resilience Act.

65 For instance, Google moved their database systems to the
open-source MariaDB, see Jack Clark, ‘Google Swaps out
MySQL, Moves to MariaDB’ The Register (12 September
2013) <https://www.theregister.com/2013/09/12/google_
mariadb_mysql_migration/> accessed 14 August 2024.

66 Art 3(13) & Art 13(5) CRA.
67 Izquierdo Grau analyses this division between standalone

open-source and integrated open-source in the context of
the recent Product Liability Directive proposal, see Guillem
Izquierdo Grau, ‘An Appraisal of the Proposal for a Directive
on Liability for Defective Products’ (2023) 12 Journal of
European Consumer and Market Law 198.

68 Art 19 & 20 CRA.
69 Art 3(16) CRA.
70 Art 3(17) CRA.
71 Art 19(2) & 20(2) CRA.
72 Art 3(1) CRA.

2025

Mattis van ‘t Schip

80 1

42 The Cyber Resilience Act defines open-source
software as “software the source code of which is
openly shared and […] made available under a free
and open-source license.”73 From this definition,
however, it is not immediately clear that open-
source software is also a software product.

43 The Cyber Resilience Act itself does not define what
a ‘product’ is. The EU’s Blue Guide, the Commission’s
interpretation guide for product rules, offers some
additional guidance for definitions related to
European product legislation.74 The Guide defines
a product in relation to its placing on the market:
“Union harmonisation legislation applies to products
which are intended to be placed (and/or put into
service) on the market.”75 This element of ‘placing
onto the market’ is thus an important qualifier for
open-source software as a software product under
the Cyber Resilience Act.

4. Placing on the Market

44 The Cyber Resilience Act defines that a product is
placed on the market when it is “made available”
on the Union market, meaning “the supply of a
product […] for distribution or use [in the Union] in
the course of a commercial activity, whether in return
for payment or free of charge.”76 These definitions
highlight that open-source software can thus be
offered on the market – and therefore be a product
under the Cyber Resilience Act – even if the software
is offered for free.

45 Additionally, open-source software is “placed on the
market” in the sense of the Cyber Resilience Act if
the developer supplies the product “in the course of
a commercial activity”. Although this is an additional
requirement, its abstract character caused much
discussion after the Commission’s proposal.77

73 Art 3(48) CRA.
74 Commission notice – The ‘Blue Guide’ on the implementation

of EU product rules [2022] OJ C247/1.
75 Blue Guide (n 75), 17.
76 Art 3(22). Emphasis mine.
77 Aertsen (n 13); Webmink In Draft, ‘Fixing The CRA For Open

Source’ (Webmink In Draft, 20 February 2023) <https://the.
webm.ink/fixing-the-cra-for-open-source> accessed 21
February 2023; Nicholson (n 13).

5. Commercial Activity

46 The provisions of the Cyber Resilience Act do not
clearly define ‘supplying a product in the course
of a commercial activity’. Recital 18 of the Cyber
Resilience Act states that “only free and open-
source software made available on the market, and
therefore supplied for distribution or use in the
course of a commercial activity should be covered
by this Regulation.” Although the Recitals are not
legal provisions, they offer an interpretation of what
‘supplying in the course of a commercial activity’
means in the context of open-source software.78

47 The Recitals note several examples of open-source
software supplied in the course of a commercial
activity. Open-source software is supplied in the
course of a commercial activity if the developer 1)
charges a price for a product; 2) charges a price for
technical support services that does not serve the
recuperation of actual costs; 3) provides a software
platform where the manufacturer monetises other
services; or 4) if the software requires as a condition
for use the processing of personal data, unless for
certain legitimate purposes (e.g., security).79 The
legislators seemingly had particular open-source
projects in mind when drafting these examples. For
instance, the provision of a software platform where
the manufacturer monetises other services can relate
to Android: the core of Google’s mobile operating
system is open source, but Google integrates the
Google Play Store, Google Drive, and other similar
services into Android when providing the platform
to smart phones.80

48 This list is not exhaustive, as the Recital notes that
supply within the course of a commercial activity
“might be characterised” by the options mentioned
above.81 Other activities and conditions can also bring
the open-source software project in the context of a
commercial activity, placing additional emphasis on
the question when an activity is ‘commercial’ under
the Cyber Resilience Act.

49 Many hobby developers add donation options to
their open-source software (e.g., Patreon, PayPal).
Developers often make such donation requests to
cover the project’s maintenance costs (e.g., website

78 See Llio Humphreys and others, ‘Mapping Recitals to
Normative Provisions in EU Legislation to Assist Legal
Interpretation’, JURIX (2015) 42–44 and cases cited therein.

79 Recital 15 CRA.
80 Ron Amadeo, ‘Google’s Iron Grip on Android: Controlling

Open Source by Any Means Necessary’ (Ars Technica, 21 July
2018) <https://arstechnica.com/gadgets/2018/07/googles-
iron-grip-on-android-controlling-open-source-by-any-
means-necessary/> accessed 19 January 2024.

81 Recital 15 CRA.

The Cyber Resilience Act and Open-Source Software: A Fine Balancing Act

202581 1

costs).82 At the same time, research shows that,
in certain large-scale open source projects, code
contributions by companies can be ten times larger
than contributions by volunteers.83 Such large-scale
contributions might lead to the conclusion that the
entire open-source project falls into a ‘commercial
activity’, as commercial parties maintain nearly the
entire project. A strict dichotomy between open-
source software and commerciality does not exist.84
There are diverse ways in which an open-source
project can obtain financial and/or organisational
support.85

50 The Commission proposal lacked insight into these
diverse methods of commerciality, as the text only
gave examples of open-source software supplied
during a commercial activity.86 The Council and
Parliament, in response, significantly expanded the
Recitals, especially regarding open-source software.
As a result, the legislators exempted many types of
open-source software from the scope of the Act. For
example, the amended Recitals state that asking for
donations does not constitute supply in the course
of a commercial activities, as long as the developers
do not seek to gain profits from those donations.87
Furthermore, the Recitals state that an open-source
project is not supplied in the course of a commercial
activity merely due to development support from
commercial entities.88 In sum, the role of open-
source software within the Cyber Resilience Act
largely depends on whether the software is supplied
in the course of a commercial activity.

82 Cassandra Overney and others, ‘How to Not Get Rich: An
Empirical Study of Donations in Open Source’, Proceedings
of the ACM/IEEE 42nd International Conference on Software
Engineering (ACM 2020).

83 Yuxia Zhang and others, ‘Companies’ Participation in OSS
Development–An Empirical Study of OpenStack’ (2021) 47
IEEE Transactions on Software Engineering 2242, 2249.

84 Wheeler (n 14).
85 ibid.
86 Aertsen (n 13).
87 Recital 15 CRA.
88 Recital 18 CRA.

D. Assessing the commerciality
of a project

51 The commerciality of open-source software largely
determines whether the software falls under the
scope of the Cyber Resilience Act. Therefore, the
exact meaning of ‘supplying in the course of a
commercial activity’ merits further examination.

52 Most activities are commercial if developers use
them to earn a profit, i.e. the income from these
actions exceed maintenance costs. For example, the
Cyber Resilience Act lists charging a price for the
software or for technical support, when this exceeds
maintenance costs, as indicative of supplying the
software in the course of a commercial activity.89

53 In contrast, certain projects are not supplied during
a commercial activity. Again, developers of such
projects mostly do not earn income that exceeds
their maintenance costs, such as receiving small
donations.

89 Recital 15 CRA.

2025

Mattis van ‘t Schip

82 1

Table 1: The scope of the Cyber Resilience Act for
open-source software90

Indicative of a supplying the software
in the course of a commercial activity

• An intention to monetise beyond the recuperation of actual costs
• Charging a price for the product
• Charging a price for technical support
• Personal data processing as a condition for use of the software (except for

certain justified purposes)
• Accepting donations exceeding the costs of developing and maintaining the

software, without the intention to make a profit.

Indicative of a supplying the software
outside the course of a commercial ac-
tivity

• Monetisation only to recuperate costs of maintenance, instead of making a
profit (e.g., by public administration entities)

• Supply of software intended to be integrated by other manufacturers, with-
out monetisation of original software

• Products which receive financial support or developmental support from
manufacturers

• The mere presence of regular releases
• Development by non-profit organisations, if they use their earnings after

cost for non-profit objectives
• Contributions to open-source software when not involved in project leader-

ship/ownership
• Mere distribution on repositories

Special regulatory regime Open-source software stewards, legal persons who “provide support on a sustained
basis” for the development of open-source software and play a “main role in ensuring
the viability” of open-source software

90 Recital 16-20 CRA.

54 Table 1 shows how the Recitals include and exempt
numerous open-source software projects from the
scope of the Cyber Resilience Act. Based on this
overview, a few questions remain.

55 The list of commercial activities in the Recitals is
non-exhaustive; the Recital states that a commercial
activity “might be characterised” by the options
mentioned.91 In the future, courts may thus amend
the list and determine that other activities are also
commercial.

56 An assessment of other activities, however, is
difficult, as the Recitals further state that “the
mere circumstances under which the product has
been developed, or how the development has been
financed, should […] not be taken into account” when
assessing the commercial nature of the software.92

91 Recital 15 CRA. Emphasis mine.
92 Recital 18 CRA.

This limitation seems to directly contradict the
Recitals themselves. As shown in Table 1, the Recitals
explicitly exempt certain types of development (e.g.,
development by commercial entities) and financial
models (e.g., receiving donations) from the scope of
‘supplying a product in the course of a commercial
activity’. A court can thus seemingly not assess the
commerciality of a project as the Recitals currently
do.

57 Additionally, the Recitals contain an unclear role
for the intention of gaining a profit. In the context of
donations, the Recitals state that accepting donations
“exceeding the costs [of] design, development and
provision of a product” means that the software is
supplied in the course of a commercial activity.93
In contrast, when developers accept donations
“without the intention of making a profit”, they do
not supply the product in the course of a commercial

93 Recital 15 CRA.

The Cyber Resilience Act and Open-Source Software: A Fine Balancing Act

202583 1

activity.94 It is unclear from the Recitals when intent
is measured: at the start of the project or when the
developers introduce certain financing methods. A
developer may not intend to make a profit initially,
but, as the project grows, may consider it reasonable.
Likewise, the developer may not intend to make a
profit, but may receive such large donations from
enthusiastic users that they completely exceed all
maintenance costs. Such situations, which are not
clearly determined in the Recitals, remain complex.

58 The Commission may still resolve some of the
Recital’s complexities. Pursuant to Article 26 of
the Act, the Commission may publish guidance to
support the application of the Cyber Resilience
Act. The scope of the Act for free and open-source
software is of particular importance when they
provide such guidance.95

59 In sum, the Recitals, in general, indicate clearly when
open-source software is commercial. If developers
publish open-source software for which consumers
pay a commercial price or other consideration
(e.g., personal data), they supply the software in
the course of a commercial activity. If, in contrast,
developers merely maintain or support open-source
software, they do not supply the software during a
commercial activity. Simultaneously, when moving
beyond a general assessment, the Recitals do contain
certain conflicting statements. These statements
might hinder clear answers to future questions
surrounding the position of open-source software
under the Cyber Resilience Act.

E. Specific provisions for open-
source software within the
Cyber Resilience Act

60 The Cyber Resilience Act does not only regulate
open-source software developers to improve the
cybersecurity of open-source software. The Act
also prescribes specific rules for ‘open-source
software stewards’, proprietary software developers,
and other parties with the aim of improving the
overall cybersecurity of the open-source software
ecosystem.

I. Open-source software stewards

61 In the open-source software community, there
are certain organisations that support the
development of open-source software as part of

94 Recital 15 CRA.
95 Art 26(2)(a) CRA.

their overall mission statement. In some cases,
these organisations also develop core open-source
software. An example of such an organisation is
the Python Software Foundation, which aims to
advance the Python programming language and its
community. The foundation organises conferences,
offers grants to developers, and “produces the
core Python distribution”.96 Python is a core
programming language for software worldwide; it
ranks second, after JavaScript, in a recent study from
Github on the open-source software hosted on their
platform.97 The Python Software Foundation thus
offers core support to the open source community,
both through development and support.

62 The Cyber Resilience Act addresses organisations
such as the Python Software Foundation as ‘open-
source software stewards’.98 A steward is a legal
person that provides systematic support for the
development of open-source software, which is
intended for commercial activities, as part of their
overall objectives.99 Importantly, the definition
states that a steward is not a manufacturer.

63 Open-source software stewards receive a special
position within the supervision scheme of the Cyber
Resilience Act. Stewards are subject to a “light-touch
and tailor-made regulatory regime”.100 The idea
behind this scheme seems to be that open-source
software stewards are vital to the continuation of
the open-source ecosystem; the legislators believe
they have a “main role in ensuring the viability of
[open-source software]”.101

64 Open-source software stewards have several
obligations.102 First, stewards must put in place
cybersecurity policies for secure development of
open-source software and vulnerability handling
by the developers of that software.103 The Python
Foundation, for instance, has a vulnerability handling
system where users can contact the ‘Python Security
Response Team’ for support.104 Stewards cannot be
fined for non-compliance with these obligations,105
but they can be required to take certain corrective

96 <https://www.python.org/psf/mission/>.
97 Kyle Daigle and GitHub Staff, ‘Octoverse: The State of Open

Source and Rise of AI in 2023’ (The GitHub Blog, 8 November
2023) <https://github.blog/news-insights/research/the-
state-of-open-source-and-ai/> accessed 13 August 2024.

98 Recital 19 CRA: ‘open-source software stewards include
certain foundations[.]’

99 Art 3(14) CRA.
100 Recital 19 CRA.
101 Recital 19 CRA.
102 Art 24 CRA.
103 Art 24(1) CRA.
104 <https://www.python.org/dev/security/>.
105 Art 64(10)(b) CRA.

2025

Mattis van ‘t Schip

84 1

actions.106 This exemption also means that stewards
cannot affix a CE-mark to their product.107

65 Stewards must also co-operate with market
surveillance authorities to mitigate vulnerabilities
in open-source software packages.108 Market
surveillance authorities are responsible for taking
corrective measures when developers do not comply
with the rules of the Act. This co-operation seems
to be the essence of the steward role: providing
communication between the open-source community
and authorities in cases such as Log4j. In that line,
it is logical that open-source software stewards
provide support for software with commercial intent,
meaning integration into proprietary products or
services.109 Through commercial integration, these
software packages – and their vulnerabilities –
have considerable influence on the global software
ecosystem.

66 Finally, there are obligations for stewards that
are also involved with development of open-
source software.110 They must also comply with
certain notification obligations for developers,
particularly the notification of actively exploited
vulnerabilities.111 However, as open-source software
stewards are not manufacturers per the definition
in Article 3(14), they do not have equal obligations
to traditional manufacturers. Article 24(3) only lists
notification obligations.

67 It is imaginable that a strict delineation between
open-source software stewards and manufacturers
is not feasible in practice. Stewards, such as the
Python Foundation, also develop software. Are
such stewards then manufacturers for that software
independently – assuming the software is supplied
in the course of a commercial activity – or are they
stewards – and thus not manufacturers – for both
providing support and developing products? As
described above, in the former they must comply
with the Act’s many obligations for manufacturers,
while in the latter they only carry the notification
obligations of Article 24(3).

68 As with the Recitals above, the Commission may
provide some answers to the role of open-source
software stewards when it publishes guidance on the
application of the Cyber Resilience Act.112 Moreover,
regulators could eventually solve such conflicts
through the ‘tailor-made’ regulatory regime for
open-source software stewards.

106 Art 52(3) CRA.
107 Recital 19 CRA.
108 Art 24(2) CRA.
109 Recital 19 CRA.
110 Art 24(3) CRA.
111 Art 24(3) & 14(1) CRA.
112 Art 26(2)(a) CRA.

II. Proprietary manufacturers
using open-source software

69 The Cyber Resilience Act applies to manufacturers of
software and hardware products. This scope means
that proprietary manufacturers are also responsible
for improving open-source software cybersecurity,
through several ways.

70 First, the Cyber Resilience Act inherently applies the
broad applicability of the Act means that proprietary
software – and proprietary software developers –
must adhere to certain cybersecurity requirements.
Since open-source software is virtually always part
of proprietary software, the requirements for the
proprietary software package inherently involve the
underlying open-source software.

71 This connection between the cybersecurity of the
proprietary package and the open-source software
is made explicit in the Act. The Cyber Resilience Act
requires manufacturers to exercise due diligence
when integrating third-party components, including
open-source components, into their own product.113
This obligation seems to stem from cases such as
the Log4j vulnerability, in which a vulnerability
in an open-source component puts the entire
(proprietary) software package at risk.

72 When exercising this due diligence, manufacturers
may discover certain vulnerabilities. If a
manufacturer identifies a vulnerability within an
open-source component of their own software,
they must, under the Act, report it to the open-
source developers.114 The manufacturers must
also remediate the vulnerability according to the
vulnerability handling requirements of the Act.115
If, as part of this remedy, the manufacturers modify
the code or hardware to address the vulnerability,
they must also share this code with the open-source
developer.

73 Other parties may help identify and remediate
vulnerabilities in open-source software through
voluntary security attestation programmes.116 The
Commission can set-up such a programme through
delegated acts. These programmes strive to improve
the overall cybersecurity of open-source software
which is exempted from the scope of the Cyber
Resilience Act.117 The exact content of a security
attestation programme, i.e. if the Commission

113 Art 13(5) CRA.
114 Art 13(6) CRA.
115 Art 13(6) & Annex I Part 2 CRA.
116 Art 25 CRA mentions ‘developers or users’ of open-source

software and ‘other third parties’. See also Recital 21.
117 Recital 21 CRA speaks of open-source software ‘not subject

to the essential requirements’ of the Act.

The Cyber Resilience Act and Open-Source Software: A Fine Balancing Act

202585 1

provides financial or organisational support, is not
clear from the provisions.

74 The due diligence obligation and the voluntary
security attestation programmes help to expand the
parties which support the cybersecurity of open-
source software packages.

F. Cybersecurity and open-source
software: a problem solved?

75 There is a fine balance between enhancing open-
source software cybersecurity and regulating the
open=source ecosystem which may rely on ad-hoc
and voluntary work. The Cyber Resilience Act shows
how delicate this balance is, with its many exemptions
and categorisations of open-source software, to
ensure that only software supplied within the course
of a commercial activity is regulated. The question
is then whether these considerations achieve a
balance between mitigating cybersecurity risks of
open-source software and introducing feasible legal
obligations for the sector.

76 A project like Log4j, for instance, does not fall under
the scope of the Cyber Resilience Act. The project
does not charge a price for the software nor conducts
any activities explicitly listed as commercial in the
Cyber Resilience Act. The project is merely supported
by certain donators and commercial entities,
which are both explicitly exempted as commercial
activities.118 Most likely, Log4j itself would, therefore,
not fall within the scope of the Cyber Resilience Act.
The only cybersecurity obligations related to Log4j
exist for entities who integrate Log4j into their own
proprietary software.

77 On a general level, the Cyber Resilience Act is a step
in the right direction for cybersecurity, regardless
of the rules imposed on open-source software. Many
cybersecurity requirements introduced by the Act
were not present in existing legislation.119 The Act
thus, at minimum, might improve the cybersecurity
of proprietary software, even if it would not cover
open-source software.

78 In the specific context of open-source software, the
Act aims to balance between improving cybersecurity
of open-source software while not discouraging open-

118 Based on the assumption that the donations do not exceed
the project’s maintenance costs. For further information,
see <https://logging.apache.org/log4j/2.x/support.html>.

119 Pier Giorgio Chiara, ‘The Cyber Resilience Act: The EU
Commission’s Proposal for a Horizontal Regulation on
Cybersecurity for Products with Digital Elements: An
Introduction’ [2022] International Cybersecurity Law
Review.

source software development. Broadly speaking, the
Act only covers ‘commercial’ open-source software.
Many types of open-source software are non-
commercial, as evident by the Recitals, which means
that most open-source software is not regulated by
the Cyber Resilience Act. The balance seems, thus,
to fall in favour of alleviating regulatory pressure on
open-source software developers, instead of (fully)
improving open-source software cybersecurity.
However, the cybersecurity side is also supported
by the responsibilities imposed on integrators of
open-source software and the voluntary security
attestation programmes.

79 In sum, the Cyber Resilience Act aims to make
open-source software more secure than it is
currently, without imposing responsibilities on
developers that may discourage further open-source
software development. The legislation certainly
emphasizes not discouraging the development, but
responsibilities on both developers and users of
open-source software will likely help improve its
cybersecurity.

G. The future of open-source
software under EU law

80 The Cyber Resilience Act is the first piece of
legislation that aims to strike a balance between
responsibilities for open-source software and
supporting its ecosystem.120 This means that
the legislative choices made in the Act will have
consequences for the future of open-source software
under EU law. However, the Cyber Resilience Act
includes many of its considerations for open-source
software in the Recitals. This legislative choice has
two consequences: 1) there is no clear embedded
legal framework for open-source software in the
Cyber Resilience Act, due to the applicability of
the Recitals and 2) many of the considerations are
specific to the current landscape of open-source
software and therefore overly restrictive when
considering future developments.

81 Recitals only have legal power insofar as the Court
of Justice of the European Union and supervisory
authorities use them to interpret the provisions of
the Cyber Resilience Act. In 1998, the Court held that
“the preamble to a Community act has no binding
legal force and cannot be relied on as a ground for
derogating from the actual provisions of the act in
question.”121 Recitals, therefore, can be useful for
interpretation of ambiguous legal provisions (e.g.,
supplying in the course of a commercial activity)

120 Colonna (n 54).
121 Case C-162/97 Nilsson and others ECLI:EU:C:1998:554, [1998]

ECR I-7477, para 54.

2025

Mattis van ‘t Schip

86 1

but are not separate legal provisions on which the
Court will rely.

82 In addition, the Recitals are very specific and
pinpoint different commercial modes within the
current landscape of open-source software. Future
developments may fall outside the scope of the
current Recitals. For instance, a developer could
place advertisements in their software, based on
user consent to see them. These advertisements
allow the developer to continue working full-time on
the project and similar projects. Would this choice
constitute an “intention to monetise”,122 which
places the project inside the course of a commercial
activity? Or is this just a circumstance under
which “the development has been financed”,123
although the developer also uses the money to
work on other projects? European consumer law
tackles this problem for ‘information society
services’ by stating that they are “provided for
remuneration”.124 ‘Remuneration’ is a broad concept
which involves advertisement income, but also the
request for personal data by the service, as in the
Cyber Resilience Act.125 In comparison, the Cyber
Resilience Act’s notion of a commercial activity
then seems overly restrictive, while a concept such
as ‘for remuneration’ more easily adapts to future
developments.

83 It seems that the Cyber Resilience Act’s approach
of placing virtually all considerations for open-
source software in the Recitals might make the Act
particularly vulnerable to future developments. This
focus on the existing landscape, combined with the
difficult method for assessing commerciality as
described in Section D, may impair the applicability
of the Cyber Resilience Act in the future. An
embedded legal framework for open-source products
in product legislation, which could also adapt to
future developments, remains missing.126

122 Recital 15 CRA.
123 Recital 18 CRA.
124 Art 1(b) Directive (EU) 2015/1535 of the European

Parliament and of the Council of 9 September 2015 laying
down a procedure for the provision of information in the
field of technical regulations and of rules of Information
Society services.

125 Recital 18 Directive 2000/31/EC of the European Parliament
and of the Council of 8 June 2000 on certain legal aspects
of information society services, in particular electronic
commerce, in the Internal Market (‘Directive on electronic
commerce’).

126 See also Colonna on the role of open-source software in the
new Product Liability Directive and the AI Act, Colonna (n
54).

H. Conclusion

84 This paper analysed the position of open-source
software in the Cyber Resilience Act. The paper
answered the following question: To what extent
does the Cyber Resilience Act impose responsibilities
on open-source software developers that achieve a
balance between stimulating open-source software
development and, simultaneously, mitigating
cybersecurity problems within open-source
software?

85 Open-source software stems from a unique
development culture aimed at distributing
knowledge freely. Simultaneously, the software is
crucial for the modern digital infrastructure. As with
any software, there are certain cybersecurity risks
inherent in open-source software. The European
Union aims to mitigate some of those risks through
the Cyber Resilience Act.

86 The Cyber Resilience Act aims to regulate
cybersecurity risks without discouraging open-
source software development. The Act achieves
this balance by covering only open-source software
‘supplied in the course of a commercial activity’. The
Act also introduces several other mechanisms to
support the cybersecurity of open-source software.
First, the Act prescribes a special regulatory regime
to open-source software stewards, legal persons
who support and advance the open-source software
ecosystem. Second, proprietary manufacturers may
only integrate open-source software components
in a diligent manner. Therefore, they must also
fix vulnerabilities discovered in open-source
components and share such fixes with the developers
of the component. Through voluntary security
attestation programmes, the Act also supports
other parties interested in advancing open-source
software cybersecurity.

87 At the same time, the Recitals contain complex legal
terminology. The Recitals mention many modes of
financing and development of open-source software
and if those modes are ‘supplying in the course of
a commercial activity’. However, the Recitals also
note that an assessment of a project based merely
on financing or development modes is not sufficient.
It is currently unclear how this situation should be
resolved in practice when an open-source project
is neither an explicitly included nor excluded
commercial activity.

88 The Cyber Resilience Act, however, does certainly
advance cybersecurity of open-source software
compared to the current regulatory landscape.
Through rules for proprietary integration,
proprietary software developers are also responsible
for the cybersecurity of open-source software. Such
rules mean that, even when a project is exempted

The Cyber Resilience Act and Open-Source Software: A Fine Balancing Act

202587 1

from the CRA’s scope, it will receive cybersecurity
support through the Act’s obligations on other
parties.

89 The future position of open-source software under
EU law remains somewhat unclear after the Cyber
Resilience Act, especially since so many of its
considerations for open-source software occur in the
Recitals. In sum, the Cyber Resilience Act achieves
a balance between encouraging open-source
software development and mitigating cybersecurity
risks within open-source software, but some key
challenges remain for the future.

