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ground of Product Liability law. It stands to reason 
that using rule-based approaches may be prone to 
stricter safety standards than approximative imple-
mentations.

Abstract:  The term “Artificial Intelligence” 
comprises different approaches. They can be roughly 
divided into rule-based approaches and approxima-
tive machine learning. The author discusses the legal 
implications of this technological choice on the back-

A. Introduction

1 A recent EU Commission’s proposal aims at 
amending the legal framework on Product Liability 
with specific adaptations for products employing 
Artificial Intelligence technologies.1 It is part of a 
major strategy of the European Union embracing the 
fields of Product Security, Technology Regulation 
and Contractual Liability, inter alia. The proposed 
directive adapts “non-contractual fault-based civil 
liability rules to artificial intelligence”.2 The most 
eye-catching though unspectacular novelty is—not 

* Philipp Lerch, Formerly Institute for Legal Informatics, 
Saarland University.

1 COM(2022) 495 - Proposal for a directive of the European 
Parliament and of the Council on liability for defective 
products.

2 COM(2022) 495, Explanatory Memorandum 1.2.

surprisingly—the codification of the widely accepted 
notion that software is indeed a product (Article 4, 
para 1 of the Directive). The changes made appear 
to be rather subtle (which is, simply put, a smart 
decision disregarding those hyped voices who cannot 
wait to introduce AI Law early enough as a fourth 
major area of law). Interestingly the two major 
concerns of what forms a defect (as the most central 
term of Product Liability Law), and what justifies 
exculpation are not extended by a fundamentally new 
approach. Article 6, para 1 of the Directive amends 
certain circumstances to take into account when a 
defect is being ascertained:

2 “The effect on the product of any ability to continue 
to learn after deployment” (lit. c) refers to what is 
known as “development risks” of AI systems in the 
debate. The effect on the product of other products 
that can reasonably be expected to be used together 
with the product” (lit. d) can be described as 
interoperability which has already been set for the 
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term of contractual defect.3 With lit. e the aspect 
is taken into account that products may be kept 
under control of the manufacturer via network 
connection.4 Lit f) and g) state that product safety 
requirements including cybersecurity, as well as 
“specific expectations of the end-users for whom 
the product is intended” are to be taken into account 
which is nothing revolutionarily new to the doctrine 
of Product Liability.

3 On the exculpation side the relevant Article 10, para 1 
provides even less deviations from the current law. 
The exemption ground of lit. e) is still central, which 
allows exculpation if the defect could not have been 
discovered due to the objective state of scientific and 
technical knowledge at the time when the product 
was put on the market.

4 One problem identified in the field of AI law is 
whether self-learning systems, whose behaviours 
change over time, are subject to liability also for 
the adaptions that occur after the user has put the 
product into operation.5 The novel directive surely 
aims at solving this issue. However, it assumes that 
most systems’ algorithms do not evolve in the hand 
of the user. In principle, a computer software can 
(somewhat) solve any problem either by coding it 
to explicitly implement algorithms or by “training” 
how to solve it. This touches even more fundamental 
issues that are not tackled by the Directive at all. It 
goes to the heart of a Product Liability legal regime 
and touches specifically technical concerns: What 
constitutes a defect? Was it avoidable? And if it was, 
was it also discoverable?

5 A manufacturer may make use of machine learning 
techniques instead of coding the system’s behaviour 
explicitly. The most illustrating examples for this 
can be found in the field of autonomous vehicles. 
There is ongoing research regarding so-called 
“end-to-end” approaches for autonomous vehicle 
control.6 Instead of classical modular development 

3 Directive (EU) 2019/771 of the European Parliament and of 
the Council of 20 May 2019 on certain aspects concerning 
contracts for the sale of goods, amending Regulation (EU) 
2017/2394 and Directive 2009/22/EC, and repealing Direc-
tive 1999/44/EC, OJ L 166 0f 22 May 2019 (“SGD”), Art 2(5)(b).

4 “The moment in time when the product was placed on the 
market or put into service or, where the manufacturer 
retains control over the product after that.”

5 Ebers, „Autonomes Fahren: Produkt- und Produzenten-
haftung“, in: Oppermann and Stender-Vorwachs, Autonomes 
Fahren. Rechtsfolgen, Rechtsprobleme, technische Grundlagen, p 
34 ff.

6 For instance, see Rausch et al, “Learning a Deep Neural Net 
Policy for End-to-End Control of Autonomous Vehicles”, 

of the vehicle, a single machine learning model 
is trained on the entire driving functionality like 
steering, object and lane detection, path planning, 
and control.7 In such a framework information about 
the outer world (“knowledge”), particularly the way 
a vehicle ought to behave, is not being provided 
explicitly to the vehicle. Instead, it is being implicitly 
induced by the training data, that could be obtained 
by a human driver in operation.

6 The classical way autonomous vehicles are being 
constructed is different: expert and world knowledge, 
particularly traffic rules are being explicitly coded.8 
They serve as explicit constraints over other modules 
that make use of machine learning algorithms.

7 I will call the latter approach “explicit rule based”. 
World knowledge leading to an agent’s behaviour 
is being explicitly represented and the system 
operates directly on it. The former approach is 
the “implicit” machine learning approach. The 
agent’s behaviour results from the induction of 
rules (implicitly represented in the system) from 
a given set of data. The choice of whether to use 
either of the methods also affects the widely-known 
postulate of transparency (problem of opacity): 
many machine learning techniques suffer from poor 
interpretability, known as the black box problem.

8 Unfortunately, there has not been active research 
on the legal consequences of this choice. Is the 
law technically neutral on this question? Another 
EU proposal, the famous AI Act9, has been overtly 
called “technically neutral”.10 Technical neutrality 
means that the law is not per se preferring one 
technical approach to another in a specific domain, 
neither it is imposing a specific regime on any 
technical solution. Recent legislation is being called 
“technically neutral” as the regulators may have 
explicitly enumerated the (almost) entire set of 

2017 American Control Conference (ACC) (24-26 May 2017).

7 Rausch et al, “Learning a Deep Neural Net Policy for End-
to-End Control of Autonomous Vehicles”, 2017 American 
Control Conference (ACC) (24-26 May 2017).

8 See for instance the implementation of the autonomous 
vehicle “Bertha”: Ziegler et al, “Making Bertha Drive - An 
Autonomous Journey on a Historic Route”, IEEE Intelligent 
Transportation Systems Magazine, 6 (2), pp. 8-20, 2014.

9 Proposal for a Regulation Of The European Parliament And 
Of The Council Laying Down Harmonised Rules On Artificial 
Intelligence (Artificial Intelligence Act) And Amending 
Certain Union Legislative Acts (COM/2021/206 final) (AI 
Act)

10 Memorandum to the AI Act, p. 8; Geminn, “Die Regulierung 
künstlicher Intelligenz“, ZD 2021, 354.
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possible technical approaches. The AI Act explicitly 
names both machine learning, logic, and knowledge-
based approaches; statistical ones have also been 
mentioned as forms of artificial intelligence.11

9 These explicit regulatory considerations are at the 
front of recent technological developments. General 
German Private Law relies on statutes given in the 
German Civil Code. It had been enacted in 1900. It 
provides the fundamental rules of private law, which 
means particularly contracts and liability rules (e.g. 
torts). One may claim that—given the technological 
developments in the last 100+x years—the German 
Civil Code is technology neutral by design: it does 
not pose any explicit restriction on technologies to 
be used—particularly not on Artificial Intelligence.

10 However, the general structure of legal doctrines 
may affect different technical approaches in a 
different manner. Law and Economics scholarship 
has studied the effects that legal doctrine can have 
on society, in particular by providing a framework 
to enforce contracts and property rights effectively. 
Similarly, Law and Technology as well as Law and 
Innovation studies extended this approach to study 
the interaction between these fields.

11 Building on a Law and Technology approach, we 
study the effects of the liability regime on the choice 
between adopting a smart product on explicit rule 
representations and making use of machine learning 
methods.

12 We show that correctness as a desiderate of software 
engineering and the ‘defect’ in the legal sense are 
distinct. However, when safety-relevant features 
of a product are concerned, correctness of a 
software system is de facto the obliged outcome. If 
instead the manufacturer chooses to use Machine 
Learning technologies, thus merely approximating 
the desired outcome, the law may yield certain 
degree of inaccuracies. Finally, the question arises 
whether the law may dictate the use of explicit rule 
representations in cases where a certain output or 
behaviour is asserted or minimal guarantees hold.

11 In detail Geminn, “Die Regulierung künstlicher Intelligenz“, 
ZD 2021,354. This commission states that these provisions 
are technology neutral: COM(2021) 206 final, 12: „as tech-
nology neutral and future proof as possible“.

I. Two Tier-Perspective on 
Autonomous Agents

13 There are two perspectives on Artificial Intelligence 
as identified by Russell and Norvig: (1) the behaviour 
of the agent and (2) the thought processes or reasonin.12

1. Behaviour

14 The behaviour of an agent can be simply defined as the 
relationship between a certain input and the output. 
By ‘output’ it is meant any result of calculation that 
constitutes the agent’s functionality. The ‘behaviour’ 
of an agent is usually what is of directly relvant to 
legal liability as the behaviour determines how the 
agent interacts with the environment and thus may 
be source of damage.

2. Reasoning

15 The reasoning corresponds with how a certain con-
clusion is being drawn.13 It determines the steps the 
agent performs in order to ascertain the output. Any 
computer programme may be seen as a conditioned 
sequence of intermediate system states, and a con-
crete run of a system as an unconditioned sequence 
of system states. They can be invisible to the user.

16 By “intermediate states”, I mean the sequence of 
states in between the output and input states. By 
evaluating the single steps taken by the agent, results 
might be traced and thus proven and explained.14 
This is invariant of the technology used. In classical 
algorithms, a sequence of system states is defined by 
the program flow. This is no different when machine 
learning comes into play. In neural networks, the 
latent space matches the single intermediate steps 
in the computation; in each layer there is some 
different representation of the input data which one 
may call a kind of interim result.15

12 Russell and Norvig, Artificial Intelligence. A modern approach 
(3rd Edition 2016), pp 1-2.

13 In logic, reasoning is being done by inference: propositions 
are being inferred according inference rules from a certain 
knowledge base: Russel and Norvig (fn 11), p 235. 

14 For instance, the Hoare logic offers a formal-mathematical 
tool to prove an output (a postcondition) given a certain in-
put (a precondition): Hoare, “An Axiomatic Basis for Com-
puter Programming”, 12 (10) Communications of the ACM, 
576.

15 Cf. Lassance et al, “Representing Deep Neural Networks 
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17 These two conceptual tiers correspond with the 
terms of “specification” and “implementation”. The 
specification of a system determines the outer be-
haviour given a certain input. The implementation 
determines the exact way a certain specification is 
being realized.

II. The Term Correctness of 
a Computer System

18 In Computer Science and Software Development, 
the term “correctness” refers to a behaviour of a 
computer programme. A computer system is correct 
if—given a certain input and certain preconditions 
in the state space—the specified preconditions 
hold, particularly the expected outcome.16 The 
specification is a formal or informal description of 
what behaviour a computer programme is supposed 
to have.17 Usually the term “specification” refers to 
both the requirements specification and the design 
specification. The first comprises the description 
of product behaviour in regard to the customer’s 
needs. The latter is a more fine-granular description 
of the different components, modules, and interfaces 
(subsystems) of the system. Both are not representing 
the way how to achieve things, but what to achieve.

19 Functional requirements and non-functional 
requirements are still being distinguished on the 
specification side.18 The functional requirements 
encompass that relation between input and output, 
respectively preconditions and postconditions. They 
describe the main functionality of the software. On 
the other hand, the non-functional requirements 
concern side-conditions, such as certain security 
standards, performance, etc.19

Latent Space Geometries with Graphs” <https://arxiv.org/
abs/2011.07343>

16 Cf. Dennis, ”The design and construction of software sys-
tems” in Bauer et al (eds.), Software Engineering. An Advanced 
Course, p. 22 “correctness of its description with respect 
to the objective of the software system as specified by the 
semantic description of the linguistic level it defines” The 
“description” in this sense is the code that describes the 
computer behaviour. The “objective” is what one can un-
derstand as the core of specification.

17 Schmidt, Software Engineering. Architecture-driven Software De-
velopment (2013), pp 93-111. Bauer et al, Software Engineer-
ing. An Advanced Course. 

18 Cf Dick et al, Requirements Engineering, p. 172.

19 Critical discussion on this term in Glinz, On Non-Functional 
Requirements, 15th IEEE International Requirements Engineering 
Conference (RE 2007) DOI 10.1109/RE.2007.45.

20 The implementation is the actual realization of the 
system, i.e., the concrete computer programme. The 
computer programme determines not only what be-
haviour a system may have (prescribed by the speci-
fication), but also it consists of concrete instructions 
to the system environment about how this behaviour 
shall be accomplished.20

21 Thus, on the one hand, from a Software Engineering 
internal perspective, the correctness is being assessed 
just by matching the implementation with the 
specification. From an external perspective on the 
other hand, a software product may be considered 
“sensible”, “proper”, etc. in regards to customer 
needs.

22 As described above, the specification describes the 
behaviour of an agent to its environment. The imple-
mentation is what constitutes the reasoning process, 
thus behaviour is reached by a specific sequence of 
instructions forming a certain sequence of states.

III. Implementation Approaches

23 Generally, there are two types of Artificial Intelli-
gence approaches distinguished: Rule-based systems 
and Machine Learning methods.

1. Rule-based systems

24 Rule based systems belong to the group of “symbolic” 
AI methods. Symbolic AI relies on the use of logic 
and “ontologies” to represent knowledge.21 The 
way behaviour is defined directly corresponds with 
the concepts of the problem domain. Thus, a rule 
“If A then B” can be directly represented using a 
certain syntax, e.g. “A → B”, “IF A: B” etc. Ontologies 
can refine concepts as “A consists of 1 and 2”, and 
semantic web methods may represent complex webs 
of relations between concepts.22 For instance, one 
could represent legal rules symbolically by using 

20 Imagine a programme that shall sort numbers in descend-
ing order. In first year computer science classes students 
learn that there exist many different sorting algorithms 
(Bubblesort, Quicksort, Mergesort etc.). All of them are dif-
ferent implementations of the same. 

21 These are called „knowledge-based agents” in AI research. 
Russell/Norvig, Artificial Intelligence, p 234.

22 For Semantic Web technologies used in the legal domain, 
see Benjamins et al, “Law and the Semantic Web, an Intro-
duction”, in: Benjamin et al (eds), Law and the Semantic Web. 
Legal Ontologies, Methodologies, Legal Information Retrieval, and 
Applications, pp. 1 – 17.
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a deontic logic, e.g. stating that somebody who 
murders another human being ought to be punished:

Murderer(x) → O(Punished(x))

25 If x is a murderer, he ought to be punished. It is 
clear to see that this representation of legal domain 
knowledge somewhat maps with the real life con-
cepts behind it. In a rule-based system, therefore, 
behaviour of a computer system is being described 
explicitly. The language in which rules are being de-
scribed matches the concepts of the problem domain; 
the domain-level concepts are being translated di-
rectly into logic-level names as predicates, functions, 
and constants.23 The semantic model of the logic in-
volved determines the truth of an individual sen-
tence (rule) described.24 The model thus maps the log-
ical formalism (syntax) to the real-world concepts 
and the truth of sentences in the real domain.25

26 For correctness of such approach twofold conditions 
need to be satisfied. Firstly, the rule engine, i.e. the 
component that translates the rules into executable 
instructions, needs to be correct.26 This encompasses 
both syntactic and semantic correctness; particularly 
the rules must be consistently interpretable.27

27 Secondly, the rule definitions themselves must be 
correct, thus leading to the correct behaviour of a 
system, given the rule translator works correctly. This 
means that rules shall conceptually map the problem 
domain the system is meant to represent.

28 However, there is non-determinism posing a prob-
lem because of the input/output operations of the 
autonomous system: the correctness property just 
implies that the programme meets certain post-con-
ditions given a certain input meeting the pre-condi-
tions. Neither it can be in any way logically proven 

23 For first-order logic rule representation Russell and Norvig, 
Artificial Intelligence, p 290.

24 Russell and Norvig, Artificial Intelligence, p 232.

25 The theoretical term model originates from logic to theorize 
the idea of semantic within formal systems. In Artificial In-
telligence and Machine Learning, a model is something dif-
ferent: It is closer to the colloquial meaning of a model as an 
approximation of reality. However, they are related in the 
way that also a logical model is mapping reality semantics 
onto the finite syntax.

26 This maps what Dennis (fn. 15), p. 24 demands that for “host 
level descriptions […] that are the result of automatically 
translating the designer’s description, proving the correct-
ness of the translator suffices.”

27 See Morscher, Normenlogik (Paderborn 2012), p 117 ss for 
consistency in model theory.

that a person interacting with the agent meets the 
precondition of the system with their input, nor is 
it any possible to prove this for other input/output 
periphery as sensors. Reliability cannot be ensured 
in unreliable host environments.28 Arbitrary changes 
in the circuits may inevitably happen and thus can 
lead to an error occurring.29

2. Machine Learning

29 Machine Learning relies on the idea that a certain 
model structure is parametrized and these param-
eters are being induced by a learning process.30 The 
most common structure in modern machine learn-
ing is Artificial Neural Networks (ANNs). They are a 
layered architecture consisting of several compu-
tational layers, in which each layer is a linear com-
bination of the previous layers, with some non-lin-
ear activation function applied on each output of 
the respective layer.31 Whilst any neural network 
of the same architecture practically does similar 
steps, what constitutes the network solving a spe-
cific problem are the parameters (often referred to 
as ‘weights’): in a simple ANN they are the real num-
bers that—simply spoken—determine the flow ratio 
of neurons of the previous layer to each of the neu-
rons in the next layer.

30 This is a highly general and abstract way to solve 
a problem: the same general architecture can 
be trained to a theoretically infinitely high set of 
 
 

28 Dennis (p. 24) calls this aspect ‘reliability’ in contrast to the 
correctness: A system is reliable if it may perform its func-
tions in spite of any host system failure. A system cannot be 
entirely reliable if the host system may be fallible (p. 25).

29 It is suspected that cosmic rays may sometimes affect cir-
cuitboards and can randomly change the state of computer 
systems, see e.g. Ziegler, “Effect of Cosmic Rays on Computer 
Memories”, [1979] 206 Science 776-788. It stands to reason 
that a certain degree of unreliability of computer systems is 
inevitable.

30 When talking about Machine Learning, a model is a combi-
nation of a certain shape of a network and their parameters. 
An architecture describes the principal ideas the model 
structure follows: For instance, sequences of input can be 
processed by Recurrent Neural Nets (RNNs), where the out-
put of a model is ‘plugged’ back as a model input itself.

31 A linear combination is simply a somehow weighted com-
bination (1,1,1) as can be calculated as linear combination 
with the weights (5,2,1) to (1*5+2*1+1*1)=5+2+1=8. Applied 
to n different weight vectors, one can create n different new 
values, which are output of the next layer.
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problems, if enough training data is available. It can 
be proven that ANNs are universal approximators.32

31 However, the major shortcoming in practical use is, 
that it is difficult to explain what is exactly going on 
in the middle of this network, the so-called latent 
layers (as they are ‘hidden’ in the middle of the 
network). Nor can one prove properties of a neural 
network in general. This is often referred to as the 
“black box problem” of neural networks: whilst 
certain behaviour can be validated by testing, latent 
states (representing the reasoning process steps) 
are difficult to impossible to interpret.33 The issue 
of “Explainable AI” is a current research issue, where 
these restrictions are aimed to be diminished.34

32 The most important property of these techniques is 
that they are merely approximative.35 They will not 
be correct in the sense that they would always meet 
the right result given an input, if not all possible 
inputs have been tested. Testing every possible input 
will not be possible in most domains. Just imagine an 
autonomous vehicle that may be confronted with a 
sheer vast amount of possible traffic situations and 
their combinations.

3. Neuro-symbolic Integration

33 Several hybrid methods are aiming at combining 
both approaches to each other. They are known 
under the name “neural-symbolic integration”. 
Essentially, networks may be used for for reasoning 
tasks and context understanding. Symbolic 
knowledge representations may be fed into a 
network, upholding certain properties of syntactic 
equivalence of the input logic.36 However, if these 
architectures remain approximative approaches, 
they are neither provable nor totally correct.

32 Alpaydin, Introduction to Machine Learning. (4th edn, 2016), p 
99.

33 Cf. Alpaydin (fn. 32), p 155.

34 Gunning et al, ORCID: 0000-0001-6482- 1973,. XAI-Explainable 
artificial intelligence. Science Robotics, 4(37). DOI: 10.1126/
scirobotics.aay7120.

35 Cf. the ‘probability risk’ of artificial intelligence identified 
by Zech, “Liability for autonomous systems: Tackling 
specific risks of modern IT”, in Lohsse et al., Liability for 
Robotics and in the Internet of Things.

36 E.g. Lamb et al., “Graph Neural Networks Meet Neural-
Symbolic Computing: A Survey and Perspective” <https://
arxiv.org/abs/2003.00330>.

B. Normative Knowledge vs. 
World Knowledge from 
a Legal Perspective

34 Before assessing the issue in more fine granular de-
tail, we want to shortly discuss the importance of 
different types of knowledge that are to be repre-
sented in a system.

I. Knowledge Types

35 When talking about knowledge in context of AI 
systems, a rough distinction may be made between 
world knowledge and normative knowledge.37 World 
knowledge is the set of propositions about the 
being, thus any states of or actions in the world. 
Normative knowledge is the knowledge about how 
the world ought to be; it can represent ethical or legal 
postulates.

36 From a mere information representation perspective, 
this distinction does not make a difference per se.38 
This is different in law itself. In criminal law, an 
important distinction between world knowledge 
and normative knowledge can be made. Whilst most 
criminal offences require an intention or knowledge 
of the factual circumstances that constitute the 
offence (“Vorsatz”, mens rea), there is the principle 
“ignorantia juris neminem excusat”.39 According 
to the German Criminal Code, ignorance of the 
unlawfulness of an offence committed may only 
exculpate a defendant not guilty if the ignorance 
was not avoidable.40 Regularly, there is everybody’s 
obligation to obtain legal advice on acts whose 
legality is doubtful.

37 On the other hand, in private law (contracts and 
torts) an intention or knowledge of a wrongdoing 
is—according to legal scholarship as well as jurisdic-

37 A finer distinction is made in Valente, “Use and Reuse of 
Legal Ontologies in Knowledge Engineering and Informa-
tion Management” in Benjamins et al., Law and the Semantic 
Web. Legal Ontologies, Methodologies, Legal Information Retrieval, 
and Applications, p. 71: They distinguish between different 
knowledge on the legal side. However, for the purpose at 
hand the more rough distinction will suffice.

38 However, Deontic (normative) Logic languages pose 
different issues on Computer Science than other logical 
systems. They do not touch the ways of representing, but of 
operating on them.

39 Ignorance of the law does not pose a defence; see Jackson, 
Latin for Lawyers II, (2014), p 166.

40 Section 117 German Criminal Code.
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tion—considered to encompass both the knowledge 
of the circumstances that constitute the wrongdo-
ing and its unlawfulness.41 This difference to crimi-
nal law may be explained by the higher complexity 
of private law obligations; however it also stands out 
that in private law, most legal norms do not even re-
quire intention or knowledge of the unlawful act, but 
also let mere negligence suffice.42 So the distinction 
is of less importance in private law.

38 For criminal law, the normative order imposes a 
dense obligation on everyone to inform themselves 
about the state of law. However, this becomes only 
relevant if one behaves against the law. Whilst the 
imagination of factual circumstances that fulfil the 
requirements of a criminal offense can cause liability 
for criminal attempt, the imagination of illegality of 
a behaviour that is not criminal, does not.43

39 Normative knowledge thus can have different legal 
implications than world knowledge. Put shortly, the 
law assumes that everyone must know about right 
and wrong, and failure to do so will not provide a 
defence against liability for malice.

II. Implications for Technical Systems

40 In current legal orders, there is no liability of tech-
nical systems themselves; any knowledge that is re-
quired for liability needs to be present in the human 
actors involved. For this constellation to occur, an 
analogy to § 166 German Civil Code is proposed:44 If 
an autonomous agent took a decision “knowing” a 
certain fact (whatever this means for a computer 
system), then the human the agent connected to it 
cannot raise a defence of ignorance. This however 
is not widely accepted.45

41 Cf. Müko-BGB/Grundmann § 276 Rn. 158 ff. 

42 § 826 German Civil Code is one of the rare examples where 
the law explicitly requires the intention or knowledge of 
the unlawful harm that triggers liability.

43 A maniac offense (“Wahndelikt”) where the defendant just 
imagined that his behaviour was criminal does not form a 
criminal attempt and thus is not punishable. Joecks/Kulha-
nek, MükoBGB-StGB § 17 Rn. 38.

44 Recently Linke, „Die elektronische Person. Erforderlichkeit 
einer Rechtspersönlichkeit für autonome Systeme?, MMR 
2021“, 200 (with further references).

45 Against this, see only Cornelius, „Vertragsabschluss durch 
autonome elektronische Agenten“, MMR 2002, 353 (355); 
Grapentin, Vertragsschluss und vertragliches Verschulden beim 
Einsatz von Künstlicher Intelligenz und Softwareagenten, 2018, S. 
97.

41 For a machine there is no difference between “know-
ing” about the world and knowing about norma-
tive facts. It just behaves in the way it has been pro-
grammed. Thus, if active normative knowledge of 
a machine would matter, e.g. if there would exist a 
concept of malice done by a machine, there would 
not be any incentive of a programmer or operator 
to feed a machine with the normative knowledge 
(as then this would bar the responsible person from 
the defence of ignorance). The distinction between 
the knowledge of right and wrong and other kinds 
of knowledge should not be continued when consid-
ering autonomous agents from the legal perspective.

42 Generally speaking, the latent states of a machine 
(see above) are of no importance when considering 
the liability for a system. Only the behaviour mat-
ters. It does not matter why a machine takes a deci-
sion; both knowledge of fact and knowledge of norms 
only touch the question of personal responsibility of 
a human being. As long as computer systems them-
selves cannot be held accountable there is no need 
to distinguish between normative knowledge and 
world knowledge in autonomous agents by law. This 
does not mean that this distinction does not pose en-
gineering problems when attempting to operate on 
formalized normative knowledge, i.e. by use of de-
ontic logic.

C. Technical Correctness and 
Normative Standards

I. “Defect” in Product Liability

43 In the heart of the Product Liability Law regime 
lies the term “defect”. Eliciting the scope of the 
term constitutes the remaining assessment of the 
problem.

1. Different “Flavours” of Defects

44 The  EU  Product  Liability  Directive  establishes  a  liabil-
ity for producers “caused by a defect in his product”.46 
According to the definition given in the Directive, a 
product is defective, “when it does not provide the 
safety which a person is entitled to expect”, taking 
into account the presentation of the product, the 
 
 
 

46 Council Directive 85/374/EEC of 25 July 1985 on the approx-
imation of the laws, regulations and administrative provi-
sions of the Member States concerning liability for defec-
tive products (Short: Product Liability Directive), Art. 1.
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expected use of the product, the time the product 
was put into circulation.47

45 It is acknowledged that this standard ought to be 
objective.48 In the respective recital of the German 
implementation of the Directive, it is explicitly stated 
that it relies on the “expectations of the public”49, 
which is to be concretised as the usual circle of ideal 
users.50 This means it relies on the expectation of 
the product’s target group. However, some call 
the wording “expected safety standard” an empty 
formula, as it did not make it any easier for courts 
to ascertain the standard of safety.51

46 Jurisprudence has delivered more concrete formu-
las. For instance, the level of the product’s safety 
standard to be expected is ascertained by an “ex-
haustive consideration”, taking into account the size 
and scope of the dangers, the cost of safety measures 
as well as further circumstances as the detectability 
and avoidability of dangers.52 Generally, the manu-
facturer was only liable for security measures whose 
cost was reasonably proportionate to their utility.53 
This “risk-utility-test” is also the formula to deter-
mine the safety standard under U.S. law.54

47 For the separate types of defects, doctrine distin-
guishes between those of design, manufacture, and 
instruction. When considering software systems, 
on which it is at least partially acknowledged that 
product liability law is applicable,55 it also consid-
ers how the safety standards connect with the term 
“correctness”.

47 Product Liability Directive, Art. 6.

48 BeckOGK/Goehl, § 3 ProdHaftG Rn. 14.

49 BT-Drs. 11/2447, 18.

50 BeckOGK/Goehl, § 3 ProdHaftG Rn. 15.

51 MükoBGB/Wagner, § 3 ProdHaftG Rn. 7.

52 BeckOK-IT-Recht/Borges, § 3 ProdHaftG, Rn.8.

53 MükoBGB/Wagner, § 3 ProdHaftG Rn. 7; BGHZ 181, 253 Rn. 
23.

54 Geistfeld, “A Roadmap for Autonomous Vehicles. A 
Roadmap for Autonomous Vehicles: State Tort Liability, 
Automobile Insurance, and Federal Safety Regulation” 
(2017) 105 California Law Review 1611.

55 At least for embedded systems (software that has been 
integrated into a physical good) this is acknowledged: 
MükoBGB/Wagner, § 2 ProdHaftG Rn. 6. However, this 
should not be discussed another time in this paper.

48 First, it is obvious that these terms are of different 
meaning. By definition, a software is correct if 
it matches the specification.56 Now, given the 
specification also matches with the safety standards 
demanded by law (including the safety standard 
demanded by a reasonable and ideal user), a correct 
software also fulfils the safety standards demanded 
by law. In this case, one can state the presumption 
that correctness is a prima facie condition for a 
software to fulfil these safety requirements.

49 However, neither an incorrectness implies a defect 
necessarily, nor follows from a defect in the legal 
sense that the software is technically incorrect. 
Literature restricts the term “defect” to features 
that are “safety relevant”.57 This can be explained 
by the purpose of Product Liability Law: there shall 
not be an obligation to deliver an optimal product.58 
Product Liability is about safety only. Therefore, 
naturally not every incorrectness poses a defect.

50 On the other hand, a software may be completely 
correct, but still not meeting the product safety 
requirements. The flaw is therefore to be found in 
the specification. It might be that the requirements 
are itself “incorrect” or “flawed”. This only applies 
to the “external” safety expectations that cannot 
be systematically captured within the “internal” 
development sphere that is only concerned with 
matching the implementation with the specification. 
Whereas, the flaw can be that needs have not been 
sufficiently put into specification, which means that 
the product does not fit the customer needs.59 From 
an engineering perspective, it is to be said that all 
customer needs are required to be taken into account 
when eliciting requirements; they come in vague 
statements from the persons in charge of eliciting 
the needs.60 This will entail observing the market 
and also the legal framework around this market, 
particularly safety standards.

2. Is always correct software expected?

51 Imagine a judge examining a case of a potentially 
flawed feature that is safety-relevant. Without 
doubt, this leads to an application of the product li-

56 See above, p 5.

57 MükoBGB/Wagner, § 3 ProdHaftG Rn. 2.

58 BeckOK-IT-Recht/Borges, § 3 ProdHaftG Rn. 21.

59 In any requirements elicitation process the (abstract) needs 
serve as “input requirements” to the next level of require-
ments elicitation. Dick et al (fn. 17), p. 33 ss.

60 Dick et al (fn. 17), p. 33 ss.
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ability regime. The question then is whether every 
incorrect implementation of a safety-relevant fea-
ture triggers liability. By the term incorrect I mean 
that the specification of the feature is flawless; the 
engineers in such a case correctly considered a fea-
ture that falls into the scope of the public safety ex-
pectation. The defect to be considered merely lies in 
the wrongful implementation.

52 It is highly doubtable whether the public expectation 
always demands software to be correct in the terms 
stated above.61 Obviously, this cannot be determined 
generally and depends highly on the requirements 
of the domain. From an algorithmic perspective, 
there are some problems that are so-called NP-
hard: a correct solution needs—from what theoretical 
computer science’s complexity theory is at least 
presuming—exponential runtime complexity.62 
Thus, they cannot be practically solved correctly 
as the runtime would be too high.63 An example is 
the Traveling Salesman Problem (TSP), where the 
shortest path in a graph is searched, that traverses 
all nodes and finishes at the starting point.64 It cannot 
be solved efficiently (which means in polynomial / 
non-exponential time) whilst being correct. However 
there exist heuristics, that do not guarantee an 
optimal solution, but a reasonable runtime.65

53 Therefore, the public safety expectation (and this 
is only what matters)66 cannot be an always correct 
software, even in safety-relevant matters; if complex 
problems are solved that can only be solved by 
approximating algorithms, there cannot be claimed 
a reasonable expectation of a correct software. Then, 
however, testing needs to be done to a reasonable 
extent.

61 Cf. BeckOK-IT-Recht/Borges, § 3 ProdHaftG Rn. 21; Taeger, 
„Produkt- und Produzentenhaftung bei Schäden durch 
fehlerhafte Computerprogramme“ 1995 Computer und 
Recht 257, who stress that flawed software does not pose a 
defect necessarily.

62 The “P=NP-Problem” is actually a Millennium Problem for 
which the Turing Society offers a prize of One Million Dol-
lars. Solving this problem would go beyond the scope of this 
essay. It may be solved in a further paper by the author. See 
Goldreich, P, NP, and NP-Completeness. The Basics of Computa-
tional Complexity, p. 48 ff.

63 Goldreich (fn 61), p. 50.

64 Lin and Kernighan, “An Effective Heuristic Algorithm for 
the Traveling-Salesman Problem” [1973] 21 (2) Operations 
Research p 498-516.

65 Lin and Kernighan (fn 61).

66 BeckOK-IT-Recht, § 3 Rn. 21.

54 However, a manufacturer cannot always claim the 
impossibility of a correct implementation. There are 
cases where a product cannot be safely brought to 
market, and thus shall not be issued at all.67

55 In parallel to this test, side-constraints posed by 
legal rules and standards must also be taken into 
account.68 For autonomous vehicles, the German 
Traffic Code (Straßenverkehrsgesetz) imposes a regime 
for the technical admission requirements. Thus, the 
law specifies that any autonomous vehicle ought to 
ensure the behaviour of a “risk-minimal” state: A 
vehicle ought to set itself to a safe idle mode in a 
safe position (§ 1 d para 4 StVG, § 1 e para 2 no 3), 
or otherwise an infringement of traffic rules would 
occur. This is an explicit minimal guarantee of the 
product safety standard by law.69 It is to be further 
discussed whether these minimal guarantees demand 
a correct implementation or can be implemented by 
approximation methods.70

3. Software Defects as Defects 
of Design only?

56 From an engineering perspective, a system may be 
either incorrect (i.e. its implementation does not 
meet the specification) or suffer of poor specification 
and thus the requirements are badly elucidated and 
do not meet the customer needs. Generally, one 
could speak of a defective product in this sense.

57 An issue however is to decide whether a defect 
is legally a design or manufacturing defect. This 
distinction is necessary as it determines the well-
known safety standard test: defects of design are 
determined by actually applying the risk-utility test 
while defects of manufacture on the other hand can 
be proven by showing that the individual exemplar 
suffers of a disadvantageous deviation from the 
design plans.71 This is because the public may rely 
on the specific properties of a product series.72 The 
blueprints of a product thus pose a self-inflicted 

67 BGH NJW 2009, 2952; BeckOGK/Goehl, § 3 ProdHaftG Rn. 15; 
MükoBGB/Wagner, § 3 ProdHaftG Rn. 45.

68 MükoBGB/Wagner, § 3 Rn. 27 ff.

69 The term “minimal guarantee” refers to software specifica-
tion, in which the expected behaviour of a system or subsys-
tem is stated, disregarding of a successful or non-successful 
execution of the component. See fn 101.

70 See below, p 19.

71 Wagner, AcP 217 2017, 707 (725 s).

72 BeckOGK/Goehl § 3 ProdHaftG Rn. 70.
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safety standard that may be stricter than the 
objective standard matching the public expectation 
applying in the case of a design defect.

58 A manufacturing defect is a disadvantageous 
deviation of the product from the safety standard 
imposed by the producer themself.73 In literature, 
Wagner claims that manufacturing defects of 
software only comprise wrongful delivery of software 
to individual specimens of the product, mainly 
relating to embedded systems.74 One can reasonably 
doubt whether this perspective is entirely correct. 
Wagner further claims that a software not meeting 
the respective safety requirements was “per 
definitionem” suffering of a production defect, as every 
specimen of the product was affected.75 However, 
public expectations may also arise from certain 
specifications that represent standards shared 
by several producers of software (interfaces). This 
comes into play particularly when components are 
delivered for end-user software products. Therefore, 
unlike Wagner’s claims, incorrect software may pose 
a production defect rather than a design defect if one 
considers the coding as part of fabricating an end 
product rather than just constructing it.

59 In the analog world, a defect of design may be con-
sidered as wrong blueprints. They can be regarded as 
what specifications are for the manufacture of soft-
ware. If a software is incorrect as it was not matching 
the specification, it is comparable to an item that has 
not been produced according to the blueprints. It is—
from this perspective—a defect of manufacture. On 
the other hand, a wrongful specification resembles 
a defective blueprint. It stands to reason that—if the 
manufacturing defect’s differentia specifica is the devi-
ation from the intended design76—incorrect software 
deviating from the specification would have to be 
regarded as suffering from a manufacturing defect.

60 This is particularly important when software 
components are being delivered. The specification 
fulfils a special task in multi-component software 
systems. It defines the interfaces with which other 
components may communicate with the respective 

73 Cf. MükoBGB/Goehl § 3 ProdHaftG Rn. 70; discussed 
by Hubbard, Sophisticated Robots: Balancing Liability, 
Regulation, and Innovation, [2015] 66 Fla. L. Rev. 1803 (1854 
ss).

74 Wagner, Produkthaftung für autonome Systeme, AcP 217 (2017), 
707 (725 s).

75 Wagner (fn. 74), AcP 217 (2017), 707 (725 s).

76 Turner and Richardson, “Software defect classes and 
no-fault liability.” UC Irvine. ICS Technical Reports. 
Published 1999-04-05 p 16 <https://escholarship.org/uc/
item/11v8f8tc>.

sub-system or component.77 A component of a 
software may be a product itself in the sense of 
Product Liability Law.78 Now if a component promises 
by specification to deliver service to another host 
environment this specification serves as much as 
a self-inflicted standard as a blueprint in a series of 
fabricated goods does. Public expectations are then 
subjectively formed by the intended design.

61 I do not want to argue out this issue; there may be 
good arguments for not considering incorrectness 
of software as defect of manufacture, certainly. It is 
not just as simple as to refer to the argument of a per 
definitionem nature of the implementation process. It 
highly depends on the mapping of analogies from the 
digital to the analogue. In literature it has therefore 
been proposed—with similar arguments—a new type 
of defect, the “generic manufacturing defect”.79

62 Finally, it cannot be predicted today that the pre-
vailing opinion on the nature of a bug will be seen 
correctly as a manufacture defect, if the defect re-
lies on a deviation from publicly available interface 
specification. I will thus assume for the purpose of 
this study that incorrectness will lead to a defect of 
design rather than manufacture.

4. Proving versus Testing

63 To ascertain the quality of a software product, the 
two main ways are proof and testing. A proof is a 
mathematical (or other formal) procedure in which 
the logical necessity is induced, that a software or 
an algorithm returns the correct output (or sets the 
machine into the specified state) given a certain in-
put.80 For this it is necessary to observe the soft-
ware’s code. Formal proving is considered more of 

77 Foster and Towle, Software Engineering. A Methodical Appoach 
(2nd Edition 2022), p 194.

78 § 2 Produkthaftungsgesetz regards as product also the items 
that are part of another product. This relies on Art. 2 Prod-
uct Liability Directive. Similarly Art 3 Product Liability Di-
rective considers the manufacturer of a component as pro-
ducer.

79 Turner and Richardson (fn. 78), p 19 <https://escholarship.
org/uc/item/11v8f8tc>.

80 Dennis (fn. 76), pp 22 ff: “To prove correctness of a software 
system or component, one establishes by logical deduction 
that some description of the system or component asserted 
to be correct by the designer is equivalent to the description 
of the system or component expressed at the host level”. 
The “description of the system or component asserted to be 
correct” is none less than the specification.
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a theoretical thing.81 Particularly, every computer 
programme entails a sort of non-determinism, as a 
software usually works in an operating system en-
vironment with a very large state space; the pro-
gramme calls input/output functions indirectly by 
system calls to the operating system, and usually 
user inputs are not foreseeable. In short: one can-
not make sure that the executing environment sat-
isfies all the preconditions specified.82

64 Furthermore, even in a very simple programming 
language, it can be shown that the so-called 
Turing-completeness leads to the undecidability of 
certain properties of the code.83 The well-known 
Halting Problem states that for no programming 
language that enables loops or recursions (possibly 
leading to infinite loops or recursions), there can 
be a program that decides for all valid programs 
whether this program falls into an infinite loop or 
recursion. Thus, there will never be any algorithm, 
software, or Artificial Intelligence that can cross 
this logical barrier. However, this does not mean 
that programmes cannot be written in a form that 
enables a proof on their correctness. This process 
just cannot be automatized.

65 Machine learning applications cannot be proven so 
far; we would have to understand what is going on 
inside of the model. Instead, only statistical margins 
can be defined, that a machine learning system shows 
a certain behaviour (given a certain input) with some 
percentage of probability.84 This is done by means of 
testing. The term binary term correctness may then 
be replaced with scalar measure of performance of a 
model. Therefore, a programme is either correct, or 
it is not, tertium non datur, but it can be performing 
well (by accuracy metrics, e.g.) more or less.

81 For instance, first year CS students are being taught the 
Hoare Logic (fn. 13) to prove that certain conditions hold 
given a certain preconditions by analysing the source code 
of a programme. 

82 This is being called a problem of “reliability” of a software 
system: Dennis (fn. 15), pp 24 ss.

83 Enderton, Computability Theory (2011), pp 79-102.

84 Leupold et al., Münchener Anwaltshandbuch IT-Recht (4th edn 
2021), 9.1 Rn. 12.

5. Impacts on Product Liability

a) Correct Boundaries of Decisions 
and Training Procedures

66 Originating from American law, the consumer 
expectations are being ascertained by a “risk-utility 
test”.85 A product is thus to be considered defective 
if it poses risks to the consumer that are not being 
outweighed by the benefits.86 Marchant and Lindor 
argue that this leads to a prohibitive effect of further 
developments as every advantageous improvement 
of the algorithms used can thus create liability, 
as the benefits of implementing such a change 
(particularly protecting human life, in the example 
of autonomous driving) would outweigh the cost, 
at least when highly valuables as life and body are 
endangered.87 This would lead to basically any bug 
imposing liability.

67 Geistfeld correctly objects that this argumentation 
relies on the assumption that autonomous cars are 
being explicitly coded by rule definition.88 Instead, 
he distinguishes parts that concern “rules that 
constrain or guide the machine learning, such as 
coding that instructs the vehicle to always stop at 
stop signs”89 and the parts that make use of machine 
learning technologies.90 Only the former was subject 
to a code-evaluation as proposed by Marchant and 
Lindor.

68 First of all, it needs to be stated that—given Marchant 
and Lindor are right with their claim—correctness 
in the sense stated above would be a minimal 
requirement for autonomous driving in regard to 
executive driving functions that—from the German 
perspective—represent safety-relevant features of an 
autonomous car (given the behaviour demanded by 
law was flawlessly specified). Thus, to avoid liability 
a manufacturer has to carefully (mathematically) 
prove both the rules’ correctness and correctness of 
the piece of software that interprets the rules.

85 Geistfeld (fn. 85), pp 1642 s. In German law the Bundesgerich-
tshof has accepted this notion for their own adjudication.

86 Geistfeld (fn. 85), pp. 1642 s.

87 Marchant and Lindor, “The Coming Collision Between Au-
tonomous Vehicles and the Liability System”(2012) 52 (4) 
Santa Clara Law Review 1321, pp 1334 

88 Geistfeld (fn. 85), p. 1644.

89 Geistfeld (fn. 85), p. 1645.

90 Geistfeld (fn. 85), p. 35.
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69 If this is being restricted to the explicit “rules 
that constrain or guide” the machine learning (as 
Geistfeld claims), it remains that both correctness of 
the machine learning routines themselves (training 
algorithms) as well as subroutines enforcing certain 
behaviour as layer on top of the learned behaviour 
ought to be correct for evaluating the product as 
defect-free.

70 Geistfeld does not go into the existence of meth-
ods that are in-between both approaches. They al-
ready have been introduced as “neuro-symbolic 
integration”.91 Roughly, rule representations are be-
ing used to influence the training to converge into a 
certain direction.92 The system itself remains how-
ever approximative.93 Therefore neuro-symbolic in-
tegration is not correct in the sense defined above. If 
a manufacturer makes use of these approaches, it is 
to claim that at least the rules injected into the ma-
chine learning model need to be correct, thus being 
a valid representation of the specified behaviour. 
This notion of correctness entails a very isolated, nar-
row view on the “linguistic level”94 of the rule def-
inition language, and not the behaviour of the en-
tire system. In this case also, sufficient pre-market 
testing is the only means to decrease the risk of lia-
bility when using still-approximative “neuro-sym-
bolic integration”.

b) Escape to Approximations

71 Basically, developers of autonomous cars are free 
to decide which technical approach is to be used. 
However, when making use of machine learning 
technology, this means that a manufacturer would 
in fact opt out the explicit code evaluation done with 
the liability test. Instead, they would opt for merely 
ensuring sufficient pre-market testing rather than 
a mathematical proof of correctness. However, this 
may lower standards, as correctness of a software 
will not be necessary. There could be a race to 
the bottom of quality standards by an escape of 
developers to mere approximations.

72 Thus, it is problematic that there can be an arbitrary 
choice between the approaches. Approximative so-
lutions may only be acceptable if the risk-utility test 
allows a system to be merely approximative—in the 
case that a correct solution would be either too ex-

91 See above, p 8.

92 See above, p 8.

93 See above, p 8.

94 This is how Dennis defines a logical level of a software, on 
which correctness applies: Dennis (fn. 15), p 14.

pensive to obtain or computationally intractable. If 
the manufacturer opts for approximative solutions, 
it is to make sure that the system had been suffi-
ciently tested, with regard to the risks it poses.95

73 If the manufacturer uses the explicit rule represen-
tation approach, the question is whether any coding 
error (bug) would pose a defect that the manufac-
turer is liable for. This is being argued by March-
ant and Lindor who claim that given the risk-util-
ity test, in risky domains any bug would impose less 
cost to remove than the risks to be expected if the 
bug would remain in the system.96 This again would 
carry a legal obligation for the manufacturer to en-
sure correctness of the explicit rule implementation, 
regarding safety-relevant features. If certain behav-
iour is steadily specified, mere approximations to 
achieve this behaviour will not suffice.

74 Moreover, the largest burden of debugging lies in 
the identification of bugs. However that identification 
costs are part of the trade-off between risk and 
utility in the respective test to ascertain a defect is 
doubtable: In the Directive97 there is a distinction 
made between the identifiability of a defect and 
the implementability of safety standards. Whilst 
the question of implementation cost touches the 
question of an expected safety standard,98 the non-
recognisability of a given defect is merely a defense 
as provided by § 1 Abs. 2 Nr. 5 ProdHaftG.99 The 
prerequisites of the defense of non-recognizability 
of a defect are much stricter and do not admit a risk-
utility-test. It stands to reason that courts will never 
consider a bug as not identifiable. According to the 
“state of science and technology” a bug could always 
be considered identifiable. And if a bug has been 
identified, the effort it costs to solve it is marginal 
most of the time. The risk always outweighs the 
burden.

75 This leads to the proposition that, when using rule-
based approaches, it is possible that—due to the 
strictness of the risk-utility test —making use of 
explicit rule definitions may lead to higher liability 
risk. The disproportionate cost to review code for 
bugs may not help the manufacturer to argue a case 

95 This is stressed by Geistfeld (fn. 85), p 1646.

96 Marchant and Lindor (fn. 87), p 1334.

97 See Council Directive 85/374/EEC of 25 July 1985 on the 
approximation of the laws, regulations and administrative 
provisions of the Member States concerning liability for 
defective products, Art 7.

98 And thus is a question of § 3 ProdHaftG resp. Art. 7 lit e of 
the Directive.

99 Cf. MükoBGB/Wagner, § 1 ProdHaftG, Rn. 52
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for themselves in the course of the risk-utility test. 
Therefore, when using explicit rule-based methods 
to implement a software, the law will de facto require 
correctness of this system, if they potentially affect 
safety-relevant features. In particularly safety-
critical domains, most features are safety-relevant 
indeed.

76 On the other hand, whether the cost of testing, when 
using approximative machine learning approaches, 
belongs to the cost of identification of a defect and 
not the cost of implementation is doubtful. In any 
case, the obliged scale of testing would depend on 
the “state of science of technology” in the way that 
the testing procedures need to be in accordance 
with the state of the art of computer science, and 
the scale of testing sufficient to ensure a reasonable 
safety standard. This also depends on available 
computational power.100 Testing therefore will 
always remain imperfect, and no “perfectly” tested 
system can be demanded by law (which would 
mostly not be even possible). The latter case means 
a necessary trade-off between the cost and benefit of 
safety measures; this is a strong argument to position 
the question of scale of testing (particularly how 
many test runs and how much test data is needed) to 
the less strict question of expected safety standard.

77 It seems therefore that by using machine learning 
techniques, the manufacturers can avoid their 
liability for correctness of a system; the law may 
tolerate system failures for machine learning 
systems more than if explicit rules have been used. 
This appears to be an adverse effect as it might lead 
manufacturers to escape strict code evaluation by 
opting for approximative approaches!

c) Minimal guarantees and safeguards

78 An exception to the principle of free technical choice 
may arise if the law demands that certain behaviour 
should occur in any case, thus with a probability of 
100 percent. For instance, Leupold and Wiesner assert 
that the absence of “decision boundaries” may lead 
to product liability.101 Geistfeld similarly recognizes 
that in autonomous driving environments, there 
would—at least—exist explicit “rules that constrain 
 
 

100 Moore’s law states the monotonic, exponential growth of 
transistor size and thus computational power (cf. Kurzweil, 
The law of accelerating returns, <https://www.kurzweilai.net/
the-law-of-accelerating-returns>). Thus, the technical de-
velopments will also shift the standards for the adequate 
scale of testing to more intense testing. 

101 Leupold/Wiesner, 9.6.4, Rn. 26.

or guide the machine learning, such as coding that 
instructs the vehicle to always stop at stop signs”102

79 With “decision boundaries” it is meant a fixed range 
in which a system can autonomously decide but may 
never go beyond these boundaries. An autonomous 
car may be coded in the way that e.g. the Acceleration 
module may not exceed a certain velocity. By our 
nomenclature, this is rule-based coding rather than 
machine learning as the behaviour will be explicitly 
defined, and the cap of velocity not just be induced by 
prior training data. Such boundaries may be imposed 
by law or by technical standards, or just arise from 
technical necessity. As rule representations, these 
boundaries ought to be correct as well if they 
concern safety relevant features.

80 Aside from that, there may be minimal guarantees to 
be expected. This is behaviour that should in any 
case hold and should be guaranteed by a system 
even in case of operation failure.103 The German 
regulations give an example of the admission of 
autonomous vehicles. The law explicitly demands 
that a system should

[…] set itself into a risk minimal state, if the driving 
may only be continued with an infringement of 
traffic rules.104

81 This kind of provision will also oblige the manufac-
turer to implement such a safeguard functionality; 
legal safety requirements can be expected to be sat-
isfied by the public. Now the question would arise 
whether the manufacturer could merely implement 
this behaviour by training the system to behave this 
way (which would mean as last resort before an in-
fringement of traffic rules, drive to the right and 
stop!). Against this it can be argued that the law re-
quires such behaviour to be implemented correctly, 
so that a mere approximation by machine learning 
techniques would not suffice.

82 One may argue that the existence of a minimal 
guarantee does lead to a legal obligation to ensure 
that the asserted behaviour shall be triggered in 
any case possible, thus with a probability of 100 
percent given certain prerequisites. This could only 
be achieved by explicit rule representation,105 as this 

102 Geistfeld (fn. 85), p. 1644.

103 This is a term used by to set such behaviour of a computer 
system within a Use Case; thus it originates from the re-
quirements elicitation phase: Cockburn, Writing Effective Use 
Cases, p. 83.

104 § 1e II Nr. 3 StVG.

105 Of course, this 100 percent would be anyway conditioned on 
full reliability of the host system.
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behaviour merely being induced by training data 
would never be an optimal solution. However, whilst 
it is possible to ensure correctness, reliability affects 
the product behaviour as well. Reliability means a 
stable system behaviour despite any hardware 
or subsystem error. It stands to reason that an 
autonomous driving system will always be prone 
to hardware errors and thus the perfectly reliable 
system does not exist.

83 One may say: At least, if there is no 100 percent 
safety, one should at least expect optimal safety. 
This would mean that a correct implementation of 
the feature can be expected, and this would bar the 
manufacturer from using approximative methods 
for the feature.

84 Against this, it may be argued that such strict 
standards do not apply to other, non-digital products. 
For a conventional car, one would assert that its 
brakes should be effective. Obviously, there is always 
a probability that the brake fails, there cannot be 
100 percent safety. Unlike computer code that works 
in a conceptually perfect environment (correctness 
assumes that the computer does what it is being 
told to do), mechanical parts are not considered 
to work in such a formal machine environment. 
Why would a prerequisite of correctness be made 
for certain features in a digital system, but not in 
other, analogous system? The doctrine of risk-utility 
test gives the answer to this question: because it is 
usually feasible at proportionate cost. If the minimal 
guarantee cannot be implemented effectively, the 
system would be usually too risky to be published, 
or an approximative solution would suffice.

85 This depends on the individual case matter. As a rule 
of thumb one can state:

Features that are mandated by law to exist shall 
be explicitly coded (by a rule).

86 Therefore, a manufacturer may not lawfully refrain 
from explicitly representing guaranteed behaviour; 
an arbitrary escape to approximative solutions 
is not possible here. However, it is an individual 
question of legal statute interpretation of the safety 
standards demanded by law whether it imposes an 
actual minimal guarantee on the manufacturer, or 
just aims at ensuring a very careful consideration of 
a certain safety aspect.

D. Regulatory Impact of the AI Act

87 Interestingly, one cannot find the term “correctness” 
in the “AI Act” proposal. Instead the term “accuracy” 
is used for postulating in Article 15, para 1 that 
systems ought to achieve an “appropriate level of 

accuracy“ (cf. Rec. 38, 47, 49). This wording appears 
to imply that the regulator acknowledges the fact 
that machine learning will only be accurate to a 
certain degree, thus is restrained to approximations. 
What is an appropriate degree of approximation, 
remains unclear and will depend on the single case 
as intended.

88 However, the transparency requirements of Article 
13 para 1 of the proposed AI Act may impose a 
stricter constraint on the design choice:

“High-risk AI systems shall be designed and 
developed in such a way to ensure that their 
operation is sufficiently transparent to enable 
users to interpret the system’s output and 
use it appropriately. An appropriate type and 
degree of transparency shall be ensured, with a 
view to achieving compliance with the relevant 
obligations of the user and of the provider set out 
in Chapter 3 of this Title.”

89 “Sufficiently transparent” sounds rigorous given 
that interpretability of the state-of-the-art machine 
learning technologies is still in its infancy. For 
certain high-risk systems this might mean that only 
explicit rules may be used so that the system can 
output a reasonable explanation.

90 The manifest itself is even more generous in its 
understanding of transparency:

“Users should be able to interpret the system 
output and use it appropriately. High-risk AI 
systems should therefore be accompanied by 
relevant documentation and instructions of use and 
include concise and clear information, including in 
relation to possible risks to fundamental rights and 
discrimination, where appropriate”106

91 It does not state that the user shall be allowed to in-
terpret from the latent space of the machine learn-
ing model what explainability is about from the 
technical perspective. The manifest appears to let 
documenting the caveats of a system suffice, par-
ticularly its approximative nature. This is the key 
information that is needed in order to interpret 
an approximative system’s output and to estimate 
its significance. Whether this is enough to achieve 
their intended goal remains questionable. Society 
might still rely on non-transparent models while 
being aware of the mere correlation-based stochas-
tical nature. The general idea of a mere disclosure 
or information-based approach rather than sub-
stantive regulation would generally be welcome.  
But then the Commission could not evade the ques-
tion of why it opted for the rather substantive reg-
ulatory approach for the rest.

106 Manifest of the AI Act rec. 47.
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E. Contract Law – The Digital 
Content Directive

92 Similar conclusions as for the product liability may 
be made for the field of contract law. According to 
the Directive, digital content providers are obliged 
to fit the contractual requirements (subjective 
requirements) as to functionality, compatibility, 
interoperability, and other features.107 It demands 
that beneath these subjective requirements the 
product should be fit for the purposes for which 
digital content or digital services of the same 
type would normally be used, taking into account, 
where applicable, any existing Union and national 
law, technical standards or, in the absence of such 
technical standards, applicable sector-specific 
industry codes of conduct.108

93 It is important to stress that these requirements 
are not restricted to safety requirements as the 
product liability regime is. It goes beyond them and 
also comprises any reasonable expectation of the 
customer to get a fully functional product. To be 
free of system failures is also a question of whether 
the system is secure.109 In Information Technology, 
a secure system needs to be reliant and available; 
unreliance and unavailability may originate from 
both software bugs as well as human manipulation.

94 Any code incorrectness that leads to system failure in 
this sense may form a breach of contract. However, 
there is no equivalent to defective production as 
the measure is either by contract or inflicted by the 
industry average. It is yet to ascertain whether a 
risk-utility test will be applied.

F. Conclusions

95 Manufacturers should be aware that if they use 
rules to represent knowledge and behaviour, they 
ought to be correct! By making use of machine 
learning techniques manufacturers may partially 
avoid code assessment in the course of a dispute 
and thus may diverge from a strict correctness 
prerequisite. Then they simply need to provide 
evidence for sufficient testing before the product 
had been put on the market. However, a caveat is 
formed by minimal guarantees to be implemented—
they ought to be implemented explicitly. If they are 
not computationally tractable or just way too costly 
to implement this can bar the manufacturer from 

107 Article 7 lit a. Digital Content Directive.

108 Article 8 para 1 lit a Digital Content Directive.

109 Compare Recital 42 of the Digital Content Directive.

putting a product on the market. It seems that under 
current liability law not all smart agents are created 
equal; approximative solutions are not required to 
be assessed as harshly as when explicit algorithms 
are used.
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