
 A Qualitative Study on the Adoption of CAA and CLA

2014 105 2

Abstract: Open source software projects are
multi-collaborative works incorporating the contri-
butions of numerous developers who, in spite of pub-
lishing their code under a public license such as GPL,
Apache or BSD, retain the copyright in their contri-
butions. Having multiple copyright-owners can make
the steering of a project difficult, if not impossible, as
there is no ultimate authority able to take decisions
relating to the maintenance and use of the project.
This predicament can be remedied by centring the
dispersed copyrights in a single authority via con-
tributor agreements. Whether to introduce contribu-
tor agreements, and if so in which form, is a pressing
question for many emerging, but also for established

projects. The current paper provides an insight into
the ethos of different projects and their reason for
adopting or rejecting particular contributor agree-
ments. It further examines the exact set-up of the
contributor agreements used and concludes that
smart drafting can blur the difference between CAAs
and CLAs to a considerable extent, manoeuvring
them into a legal grey area. To avoid costly litigation
to test the legal enforceability of individual clauses,
this paper proposes the establishment of an inter-
national committee comprised of developers, product
managers and lawyers interested in finding a com-
mon terminology that may serve as a foundation for
every contributor agreement.

A Qualitative Study on the Adoption
of Copyright Assignment Agreements
(CAA) and Copyright License Agreements
(CLA) within Selected FOSS Projects
by Sylvia F. Jakob, LL.B.(Hons.), Dipl. L.P., LL.M., Solicitor (n.p), Research Assistant, Institute for Legal Informatics,
Hannover

© 2014 Sylvia F. Jakob

Everybody may disseminate this article by electronic means and make it available for download under the terms and
conditions of the Digital Peer Publishing Licence (DPPL). A copy of the license text may be obtained at http://nbn-resolving.
de/urn:nbn:de:0009-dppl-v3-en8.

This article may also be used under the Creative Commons Attribution-Share Alike 3.0 Unported License, available at http://
creativecommons.org/licenses/by-sa/3.0/.

Recommended citation: Sylvia F. Jakob, A Qualitative Study on the Adoption of Copyright Assignment Agreements (CAA) and
Copyright License Agreements (CLA) within Selected FOSS Projects, 5 (2014) JIPITEC 105, para. 1.

Keywords: Free and Open Source Software (FOSS), Public Licenses, Outbound Licenses, Inbound Licenses, Con-
tributor Agreements, Contributor Assignment Agreements (CAA), Contributor License Agreements
(CLA)

2014

Sylvia F. Jakob

106 2

A. Introduction

1 Open source software projects are multi-
collaborative works incorporating the contributions
of numerous developers who, in spite of publishing
their code under a public license such as GPL, Apache
or BSD, retain the copyright in their contributions.
The public license, also referred to as an “outbound
license”, regulates the usage rights granted by the
developer to the outside world. It ensures that the
code can be used by virtually everyone having an
interest in doing so as long as the user follows the
terms of the outbound license.

2 However, having multiple copyright-owners can
make the steering of a project difficult, if not
impossible, as there is no ultimate authority able to
take decisions relating to the maintenance and use
of the project. This predicament can be remedied
by centring the dispersed copyrights in a single
authority via contributor agreements, also referred
to as “inbound licenses” because they regulate the
relationship of the developer with a particular
organizational entity.

3 In recent years many FOSS projects have incorporated
as non-profit organizations1 and many corporations
have begun to release protected code under open
source licenses to harness the wisdom of the
crowd.2 Many of these organizations require their
contributors to sign a contributor agreement, either
in the form of a Copyright Assignment Agreement
(CAA), whereby the developer transfers and abandons
his intellectual property rights in the contribution
for the benefit of a project’s administration, or a
Contributor License Agreement (CLA),3 whereby
the developer is only required to grant usage rights.
Some projects, in turn, continue to follow the notion
of “outbound” equals “inbound”,4 arguing that a
public license sufficed and no intellectual property
management within the project was necessary.5

4 To date no comprehensive, legal study6 has been
conducted asking which kind of projects use CAAs,
which CLAs, and which forego the management
of intellectual property of contributions entirely.
The existence of a pattern would be particularly
interesting for new projects, as many find it difficult
to determine into which end of the spectrum they
fall, whether to use a contributor agreement, and if
so, how to draft it, or where appropriate, to refrain
from using a contributor agreement from the outset.

5 It is thus the objective of this study to search for
common denominators and gain valuable insights
for the benefit of different stakeholders, first and
foremost developers, product managers and lawyers.

B. Qualitative Interviews
and Research

I. Questions and Methodology

6 To accomplish this aim, a questionnaire was
created and used as common thread during a series
of interviews. Sixteen stakeholders7 agreed to
be interviewed, including (legal) representatives
of projects, independent consultants, product
managers, independent and employed FOSS
developers and one professor of computer science
with a special focus on open source software,8 thus
constituting a representative sample of interested
stakeholders. In addition, further research was
undertaken in the fields of law, organizational
science and business informatics to back up the
results obtained.

7 As expected, a clear distinction could be made
between projects that actively managed contributions
and those that did not. The following paragraphs
shall provide an overview of selected FOSS projects,
examining their makeup and reasons for using or
refusing particular contributor agreements.

C. Projects That Do Not Actively
Manage Contributions

I. The Linux Kernel

8 The Linux Kernel is only a small part of the software
on a full Linux system, not including systems
software, libraries or applications, but as the core,
it is responsible for managing the hardware, running
user programs and maintaining the overall security
and integrity of the system.9

9 The Kernel was originally written by Linus Torvalds,
who published it as a pet project on a usenet posting
in August 1991.10 At first it was released under its
own licence, which had a restriction on commercial
activity; however, Torvalds soon changed the license
to the GPL 2, encouraging thousands of developers to
actively contribute.11 Today the Kernel is celebrated
as the most important open source project in history,
not only running on desktops, smartphones, routers,
web servers, supercomputers, TVs, refrigerators,
tablets and even the stock market (London, NY,
Johannesburg, etc.), but in many areas being the
undisputed leader.12

10 Legally, the Kernel may be regarded as a “composite
work”13 comprised of Linus Torvalds’ original code
with extensions and modifications contributed by
other developers.14 Torvalds thus holds the copyright

 A Qualitative Study on the Adoption of CAA and CLA

2014 107 2

of the composite work.15 As such, he can “distribute
and reproduce”16 the contributions as part of the
composite work. However, he cannot modify or re-
license the code under any license that goes against
the rules of the individual works, nor can he defend
possible violations in a court of law. To date every
contributor is asked to provide his patches under
the GPL v. 2, which is incompatible with many
other outbound licenses including the GPL v. 3.
Consequently, Torvalds or any other successor is
not able to re-license – i.e. change – the outbound
license or defend possible violations in a court of law
unless he obtains the permission of all contributors
in the form of contributor agreements.

11 But Torvalds vehemently refuses to adopt
contributor agreements

not because they allow organizations to re-license, but because
the copyright assignment paperwork ends up basically killing
the community. Basically, with a CLA, you don’t get the kind
of “long tail” that the kernel has of random drive-by patches.
And since that’s how lots of people try the waters, any CLA at
all – changing the license or not – is fundamentally broken.17

12 Linus emphasizes that the Kernel benefits from many
“drive-by-developers” who would be deterred if
they were requested to sign contributor agreements
before being able to submit a patch. It would further
mean a disproportionate administrative outlay for
Linus lieutenants. The “trusted lieutenants”18 are
roughly a dozen hackers responsible for maintaining
a part of the Linux Kernel. Many developers send
their patches directly to them instead of Linus.

II. Perl

13 The general-purpose Unix scripting language Perl is
in a similar situation.

14 Perl was originally developed by Larry Wall in 1987
and published under the Artistic License v. 1,19 an
open source license, likewise developed by Larry
Wall. Thousands of programmers used and improved
Perl, turning it into one of the most widely known
open source programming languages.20

15 The development process is overseen by Larry Wall
and a small group of main developers called the
“pumpkings”. They make the day-to-day decisions
on where Perl should go and make releases. Below
that are the people with commit access to the
repositories, who filter and apply patches and
changes. Beyond that are the general community
and contributors who submit patches and participate
in the mailing lists. 21

16 In the year 2000, Larry Wall and Alison Randall,
decided to redesign Perl v. 5 and adapt it to the
challenges of the 21st century. They attempted to

migrate the project from the Artistic License v. 1 to
v. 2, which was a legally overseen re-draft of version
1, and to convince every contributor to sign a CLA.
However, instead of redesigning Perl 5, Perl 6 turned
into a completely new language with a completely
new developer community. This was largely due to
the fact that most Perl 5 developers, estimated at
around 500,000, refused to agree to a license change
and boycotted the signing of CLAs.22 As a result of the
Perl language split, Perl 5 continues to be developed ,
now having arrived at v. 5.18, and Perl 6 has multiple
implementation projects such as Rakudo Perl, which
is based on Parrot and NQP (Not Quite Perl).23 In
order to be able to contribute to Perl 6, developers
are required to sign a CLA, whereas developers of
Perl 5 continue to follow the inbound=outbound
approach.

III. LLVM

17 LLVM (formerly Low Level Virtual Machine) is a
compiler infrastructure written in C++ designed for
compile-time, link-time, run-time and “idle-time”
optimization of programs written in arbitrary
programming languages. Languages with compilers
that use LLVM include ActionScript, Ada, D, Fortran,
OpenGL Shading Language, Haskell, Java bytecode,
Julia, Objective-C, Python, Ruby, Rust, Scala and C#.24

18 The LLVM project started in 2000 at the University
of Illinois at Urbana–Champaign as a research
infrastructure to investigate dynamic compilation
techniques for static and dynamic programming
languages. It was released under the University of
Illinois/NCSA Open Source License, a non-copyleft
license.25

19 The LLVM project managers decided against
introducing contributor agreements and reasoned
as follows:

The LLVM project does not require copyright assignments,
which means that the copyright for the code in the project is
held by its respective contributors who have each agreed to
release their contributed code under the terms of the LLVM
License.

An implication of this is that the LLVM license is unlikely to
ever change: changing it would require tracking down all the
contributors to LLVM and getting them to agree that a license
change is acceptable for their contribution. Since there are
no plans to change the license, this is not a cause for concern.

As a contributor to the project, this means that you (or your
company) retain ownership of the code you contribute, that
it cannot be used in a way that contradicts the license (which
is a liberal BSD-style license), and that the license for your
contributions won’t change without your approval in the
future.26

2014

Sylvia F. Jakob

108 2

IV. Outlook

20 The outbound = inbound approach is the very nucleus
of open source programming. It was Stallmann’s
vision to free software development from
appropriation through copyrights and patents.27 To
achieve this aim he developed a copyright license,
the General Public License (GPL),which drew on the
existing copyright regime to ensure exclusive rights
for the public at large and not just for the original
copyright holder. The only condition he imposed
was that any derivative works and combinations of
GPL licensed code should also be published under the
GPL. For that reason the GPL has often been referred
to as “viral”.28

21 This virality helped volunteer communities come
together on an informal basis to exchange ideas and
build upon each other’s work,29 resting assured that
this collective work and the license behind it would
be enforced by the courts.30

22 The above projects were initiated during a
Zeitgeist of free procreation of code – formalities
such as contributor agreements were unknown.
Companies were still sceptical, but allowed a couple
of developers to write code in their working time if
that saved money or raised efficiency. As a result,
there is now an enormous user and developer base.

23 The management of these projects knows that they
would be able to manage the projects much more
efficiently by holding, or having particular usage
rights, of the individual copyrights. However, this
dilemma is accepted as given, since the administrative
burden of introducing contributor agreements would
hinder creativity and the acquisition of “eyeballs”31
for effective bug detection.

24 This approach is thus perfectly acceptable for young
and small projects wanting to test the ground and
explore their creativity. Should the project take off,
there is no obstacle to commercialization as such, if
no contributor agreements have been requested – it
all depends on the outbound license used.32

25 According to Schaarschmidt et al.,33 the outbound =
inbound approach is also suitable for R&D alliances
not interested in paying expensive lawyers for
drafting complicated contracts on the distribution
of the intellectual property rights of the ensuing
products.34 Instead, everything is regulated by the
public license. Thereby the completed product
belongs to the community, and its source is open
and visible for everybody. Depending on the nature
of the public license, firms can practise open
innovation protection to different degrees: should
they use a strong copyleft outbound license, e.g. the
AGPL or the GPL, they are no longer able to market
their investment directly; however, the competition
is also barred from doing so. Should they, on the

other hand, use a permissive license, e.g. Apache or
BSD, all parties can appropriate the code and include
it into commercial products without having to share
their changes with the public. 35

26 Contributor agreements only become relevant when
it comes to the management of the project, e.g.
the ability to re-license the code under a different
public license, to sublicense the code under a
certain trademark or the ability to enforce possible
violations in a court of law.

27 In theory, a project could also decide to introduce
contributor agreements at a later stage. KDE, for
instance, introduced its Fiduciary License Agreement
(FLA) nearly ten years after its first release.36 This is
unproblematic where the number of committers is
manageable. But for very big projects, it requires
sure instincts to know when the crossroads is
reached after which the perceived benefit of having
contributor agreements is outweighed by the
burden of seeking out untrackable developers. The
latter, however, should apply to only a very small
percentage of projects, given that less than 10% of
all projects have more than 1,000 active committers
at any given time. Most projects have only one to
three committers.37

28 It may thus be concluded that certain projects, in this
paper exemplified as Linux, Perl or LLVM, made a
conscientious choice of not introducing contributor
agreements in order to save on administrative
resources and open the door for a flourishing
community of developers. Due to their tremendous
size, however, a change in the managerial approach
is no longer conceivable. Smaller projects, by
contrast, always have the choice of starting out
without contributor agreements and introducing
them at a later stage, should this be desirable.

D. Projects That Actively Manage
the Intellectual Property
of Contributions Through
Contributor Agreements

29 For other projects, legal certainty, ability to enforce
or flexibility to use the code outweigh the outbound
licensing terms outweigh the administrative burden.

30 Those projects are governed by

1. foundations,

2. development partnerships (co-operatives) and

3. individual companies (single-vendor projects).

31 A selection of those projects shall be presented
below.

 A Qualitative Study on the Adoption of CAA and CLA

2014 109 2

I. Foundations

1. The FSF

32 Although Stallmann may be regarded as the
forefather of the “inbound= outbound” approach,
he soon abandoned this path for his own projects.
He believed that the ability to re-license the code
and enforce the GPL terms in a court of law38 were
fundamental to ensure a defensive free software
regime.

33 To that end he created the Free Software Foundation
(FSF), a neutral organization entrusted with the
administration and enforcement of the copyrights
in the ensuing collaborative works. In order for the
FSF to become copyright holder of these works, each
contributor is asked to sign a Contributor Assignment
Agreement (CAA) transferring his ownership rights
in the respective contribution to the foundation.
For some GNU packages,39 the FSF does not accept
contributions of developers who have not signed
a CAA. Problematic in this respect is that some
jurisdictions do not accept outright transfers of
ownership in copyright,40 rendering the CAA in those
jurisdictions most probably unenforceable. 41

34 This problem is most salient in Europe, where the
FSFE,42 a sister organization of the FSF, provides legal
support for developers and project managers.

KDE e.V.

35 A prominent protégé of the FSFE is KDE, e.V.,
whose community builds the graphic user interface
(desktop) for Linux- or Unix-based operating
systems.43

36 KDE is the prototype of a community-initiated
project. Ever since the project started, the
community has been driven by the creativity of
the volunteers who contribute to the project. The
administrative affairs of KDE are governed by the
board, but there is no steering or central control for
the development direction. The freedom of the code
and independence of the developers is paramount.44

37 KDE licenses the ensuing code under the LGPL for the
core framework and the GPL for applications ensuring
that the code remains open for the community and
is not appropriated by a third party.45 Although the
software produced in this way is not marketable as
such, many businesses provide support, services and
training around the freely downloadable software.
Famous examples constitute the distributors Mint,
Kubuntu and Debian.46

38 In line with the FSF(E)’s ideals, KDE e.V. takes up the
role of fiduciary for its developers and asks, but does
not compel, everybody to sign a Fiduciary License

Agreement (FLA). This agreement is strictu sensu a
CAA, since it triggers the transfer of ownership of
the contribution to KDE. But it also has a fall-back
clause: should ownership in the copyright not be
transferable due to compulsory national laws, an
exclusive license is granted.47

§ 1 Grant
[..]Beneficiary assigns to KDE e.V. the Copyright in computer
programs and other copyrightable material world-wide, or in
countries where such an assignment is not possible,
grants an exclusive licence, including, inter alia:
1. the right to reproduce in original or modified form;
2. the right to redistribute in original or modified form;
3. the right of making available in data networks, in particular
via the Internet, as well as by providing downloads, in original
or modified form;
4. the right to authorize third parties to make derivative
works of the Software, or to work on and commit changes or
perform this conduct themselves.

39 As a fiduciary, KDE is interested in sustaining the
project and ensuring its longevity. Accordingly,
two main tools are necessary to achieve this aim:
the ability to 1) re-license48 and adapt the project to
new technological circumstances and 2) defend the
project and its developers in its own name:49

§ 3 K DE e.V.’s Rights and Re-Transfer of Non-Exclusive
Licence

KDE e.V. shall exercise the granted rights and licences in
its own name. Furthermore, KDE e.V. shall be authorized to
enjoin third parties from using the software and forbid any
unlawful or copyright infringing use of the Software, and
shall be entitled to enforce all its rights in its own name in
and out of court. KDE e.V. shall also be authorized to permit
third parties to exercise KDE e.V.’s rights in and out of court.

40 KDE, in line with the FSFE, chose CAAs, or exclusive
licenses, because it believes that simple, non-
exclusive CLAs are not as effective when going to
court or trying to re-license.50

41 The former has recently been confirmed by
Engelhardt.51 The latter, however, is being
circumvented expressly and impliedly by other
projects discussed below, an indication that in
the absence of common standards and/or judicial
precedents, legal uncertainty as to the effects of
CAAs and CLAs is still common.

2. The Open Source Initiative (OSI)

42 With the birth of the OSI52 and the proliferation
of public licenses, the open source business model
grew popular with companies that had previously
been sceptical and hostile due to the viral effect of
the free software. Permissive licenses, such as the
Apache or the BSD license, however, encouraged
companies interested in displacing established

2014

Sylvia F. Jakob

110 2

software companies to form alliances or sponsor
open source projects.53

43 As some of these companies were fierce competitors,54
the idea to outsource the administrative affairs and
intellectual property issues for the ensuing product
to a neutral, non-profit organization began to gain
momentum.

a.) Apache

44 One of those organizations is Apache, a US 501(c)
(3) non-profit corporation which provides
organizational, legal and financial support for
a broad range of over 140 open source software
projects.55

45 Projects that have been admitted as Apache projects
are promoted under the Apache license, a permissive
license that allows companies to take the open
source infrastructure, change it and subsume it
into closed source projects. The Apache license,
for instance, would be recommendable for the
development of a reference implementation for
a standard.56 Thereby the competition is shifted
from the infrastructure market to the market for
applications and complementary products.57

46 Companies or individual developers engage in
particular Apache projects because they are
interested in supporting the quality of the Apache
trademark. It allows them to vouch for the openness
and quality of the software they use within their end-
products.58 Some, in turn, contribute for intrinsic
reasons, wanting to give something back to the
community.

47 Since Apache caters for many commercially
oriented companies that form R&D alliances under
its auspices, it has a strong interest in being able
market the code under its trademark and vouch for
the provenance of the code. As such, a prerequisite
of becoming a committer and being able to submit
patches is to sign an Individual59 Contributor License
Agreement(ICLA).60

48 Apache rejects CAAs as these are difficult to obtain.61

The companies for which most individual developers
work do not want to part with the intellectual
property of the individual contributions in case
they are patentable or otherwise commercially
applicable.62

49 Through the CLA, however, they retain the
intellectual property rights, and grant Apache:63

a perpetual, worldwide, non-exclusive, no-charge, royalty-
free, irrevocable copyright license to reproduce, prepare
derivative works of, publicly display, publicly perform,
sublicense, and distribute [their] Contributions and such
derivative works.

There is, however, no explicit right to enforce the copyright
in a court of law. This may be explained with the fact that
Apache, and projects that follow Apache’s example, are not too

keen to be involved in copyright infringement claims.64 Since
the code is designed to be used within proprietary products,
all that is required is a copyright notice and the preparedness
to provide the source code upon request. Hitherto cease and
desist letters were sufficient to secure this outcome.

Since non-exclusive licenses do not automatically
confer standing in a court of law, however, it might be
recommendable to include such a right expressly in a CLA,
simply to be in the position to sue should it become necessary
at some point.

II. Development Partnerships
(Co-operatives)

50 More and more (commercial) software customers
are dissatisfied with what they perceive as “vendor
lock-in” and join forces to commission open source
software solutions that replace individually grown
strategic IT systems and are flexible enough to meet
the challenges of the future.

51 These alliances are generally organized as
development partnerships or co-operatives in a
specific economic area.

52 Particularly problematic is e.g. the maintenance
and development of energy and water networks65
in light of the transition from the fossil fuel and
nuclear energy age to the solar and efficient energy
age (Energiewende). This is largely due to the fact
that the IT-systems landscape dates back to a time
when software developers designed monolithic,
proprietary systems that were unable to interact
with each other or allow for new functionalities
without exposing the providers to considerable
expenses.

53 A solution is the commissioning of open source
solutions which use service-oriented architecture
(SOA) to break the monolithic software incrementally
and integrate it as separate components.

54 Other fields include e.g. the automotive industry
in the form of AUTOSAR,66 which is an open and
standardized automotive software architecture
jointly developed by automobile manufacturers,
suppliers and tool developers whose objective is to
create and establish open standards for automotive
E/E (Electrics/Electronics) architectures.67

55 Such user co-operatives place orders with different
IT providers who develop new functionalities and/
or cross-system interfaces. In order to avoid future
vendor lock-in, a prerequisite is the transfer of
copyrights in the developed work to the user co-
operative in the form of a CAA, akin to a “quasi-

 A Qualitative Study on the Adoption of CAA and CLA

2014 111 2

employment relationship”. Since research in this
area is still in its infancy, and details as to the exact
wording of the CAA are being held confidential, no
further information could be retrieved.68

III. Individual Companies
(Single Vendor Open Source
Software Project)

56 Single-vendor commercial open source software
projects are projects that are owned by a single
firm that derives a direct and significant revenue
stream from the software. Using a single-vendor
open source approach, firms can get to market faster
with a superior product at lower cost than possible
for traditional competitors.69

57 Where a firm decides to open-source previously
closed source software (firm-initiated – single
vendor project),70 it will most certainly want to
be able to have the intellectual property rights
in the contributions in order to effect different
commercialization strategies and business models.71

58 Single vendors thus tend to use GPL licenses and
request extensive contributor agreements in the
form of CAAs or CLAs that allow them to pursue a dual
licensing strategy.72 This approach is particularly
smart since code developed under the GPL does
not normally lend itself to being commercialized
in different ways. The traditional business model
around GPL licensed code is the provision of
support, services and training, as offered by the
Linux distributor Red Hat. Due to the viral nature
of the GPL, it is impossible to include GPL-licensed
code in proprietary products. The dual licensing
strategy, however, opens new revenue streams for
the initiating firm by e.g.

59 including the code in proprietary products of their
own and selling commercial licenses to competitors.

1. CAA or CLA?

60 A widespread belief is that in order to be able to
sublicense GPL-licensed code under any license,
including commercial licenses, there would have to
be an outright transfer of ownership in the form of
a CAA.

61 Many projects therefore choose an outright
transfer of ownership – including the fall-back
option of granting an exclusive license should
local copyright laws not allow a straight transfer
of ownership.73 Others, however, bend the wording
of a CLA to the extent they reserve the rights
normally only attainable under a CAA. An example
of the former approach is ETAS,74 a company that

provides engineering services, consulting, training
and support for the development of embedded
systems for the automotive industry; an example
for the latter is Digia, the owner of the programming
environment QT, which will be explored later.

2. ETAS

62 ETAS and Robert Bosch Engineering and Business
Solutions (RBEI) jointly published BUSMASTER,75 a
free open source PC software that allows for flexible
modification and extensions regarding bus systems,
protocols and hardware interfaces. The current
BUSMASTER version is based on the preceding
software tool CANvas, conceptualized, designed and
developed by RBEI.

63 When the company decided to open source the code,
they chose the LGPL, which permits the provision of
proprietary add-ons that can be dynamically linked
to the open source core.

64 In addition, they opted for a CAA based on Harmony
v. 1.0.76 The main reason for choosing the CAA was to
be able to adapt the project to new circumstances,
e.g. if at some point it might be beneficial for the
project to be turned into an Eclipse project, there
would have to be a licensing change from the
LGPL to the Eclipse Public License (EPL), which are
incompatible and could not be effected without the
permission of all contributors.77

65 Of course, owning the copyright in the contributions
ETAS is automatically able to use the code in
proprietary products, to defend violations in a court
of law and to license the code commercially to third
parties without having to explicitly state it in their
CAA, although they do so:78

We may license the Contribution under any license, including
copyleft, permissive, commercial, or proprietary licenses...

66 The outright transfer of ownership has, however,
often been criticized as too restrictive for two main
reasons:79 It bars developers (and their companies)
from exploiting their contributions otherwise, e.g.
by contributing to a different project, using it in a
commercial distribution or applying for a patent.
In addition, there is the constant danger of the
project management changing its business strategy
and converting the open source project into a
commercial one.

67 In the following paragraphs these points shall be
discussed, highlighting the solutions hitherto
developed under Harmony v. 180 and as such
adopted by ETAS, or where appropriate by
contributoragreements.org.81

2014

Sylvia F. Jakob

112 2

a.) The Contribution Cannot Be
Exploited Otherwise

68 Some critics of CAAs argue that by requesting a CAA,
the original developer is barred from exploiting
the contribution otherwise. Particularly Apache,
referred to above, stated that they chose CLAs since
CAAS were too difficult to obtain. However, this
point of criticism could be mitigated by providing
a generous license back to the contributor. For
instance, this could take the form envisaged by
ContributorAgreements.org,82 a project dedicated
at the standardization of contributor agreements:

Upon such grant of rights to Us, We immediately grant to
You a worldwide, royalty-free, non-exclusive, perpetual and
irrevocable license, with the right to grant or transfer an
unlimited number of non-exclusive licenses or sublicenses to
third parties, under the Copyright covering the Contribution
to use the Contribution by all means, including, but not
limited to:
to publish the Contribution,
to modify the Contribution, to prepare Derivative Works
based upon or containing the
Contribution and to combine the Contribution with other
software code,
to reproduce the Contribution in original or modified form,
to distribute, to make the Contribution available to the public,
display and publicly perform the Contribution in original or
modified form.83

This license back is limited to the Contribution and does not
provide any rights to the Material.

69 Given this wording, the developer has prima facie all
the rights he would have had he only ever signed
a CLA.

70 Another way forward could be a joint, independent
copyright assignment. This approach allows each
individual party to use the contribution as the
“quasi-owner”, in the words of one interviewee:

one party can do whatever they want with licensing in
the future and the other party can do whatever they want
– it’s like having two separate works.84

71 A famous example using joint, independent
copyright assignments was Sun/Oracle:

Contributor hereby assigns to Sun joint ownership in all
worldwide common law and statutory rights associated with
the copyrights, copyrights application, copyright registration
and moral rights in the contribution to the extent allowable
under applicable local laws and copyright conventions.
Contributor agrees that this assignment may be submitted
by Sun to register a copyright in the contribution. Contributor
retains the right to use the contribution for Contributor’s
own purposes.[..]

85

b.) Project Management Might
Close the Open Source Project

72 Unfortunately, Oracle changed its business strategy
after acquiring SUN and “closed” open Solaris, an
open source operating system with the ability
to become a serious competitor to Linux. This
left thousands of developers owning a part to an
unattainable whole and evoked the anger of the
community.86

73 Drafters of CAAs have thus suggested ensuring that
the transfer of ownership takes place only upon
the condition that the project will always maintain
an open source branch. For instance, this could be
framed as follows:

As a condition on the exercise of this right [to use the
contribution under any license], We agree to also license the
Contribution under the terms of the license or licenses which
We are using for the Material on the Submission Date87

74 This approach was suggested by Harmony’s CAA v.
1.0 and is currently used by ETAS.

75 ETAS thus reserves the right to use the contribution
under any license; however, it grants a broad license
back to the developer and ensures there will always
be a branch under the LGPL, the open source license
in force on the submission date.

3. Digia

76 Another approach might be the use of a CLA reserving
far-reaching rights. A prominent example is Digia,88
the owner of the programming environment QT.89
Digia is a Finnish company which not only provides
commercial support, services and training around
QT, but also distributes the GPL-licensed code under
commercial licenses.90 These allow interested parties
to modify and extend the code without having to
make the changes available to the public. Digia
requires every developer to sign a CLA in which he
agrees to license his contribution and give Digia a

sublicensable, irrevocable, perpetual, worldwide, non-
exclusive, royalty-free and fully paid up copyright and
trade secret license to reproduce, adapt, translate, modify,
and prepare derivative works of, publicly display, publicly
perform, sublicense, make available and distribute (the)
Licensor’s Contribution(s) and any derivative works thereof
under license terms of Digia’s choosing including any Open
Source Software license.

77 Digia is thus granted a non-exclusive license which
conveys the right to sublicense and make available
the code under any license of Digia’s choosing, i.e. a
right to re-license may also be inferred.

78 Digia is further aware that a multi-licensing business
model is not feasible without being in the position to

 A Qualitative Study on the Adoption of CAA and CLA

2014 113 2

pursue enforcement of the code in front of a court
of law:

3.5 Enforcement Authorization

The Licensor hereby authorizes, and agrees to execute
without undue delay any and all documents reasonably
necessary to effect such authorization, for Digia to enforce
the Licensor’s copyrights in and to a Licensor Contribution
on the Licensor’s behalf against any third parties as Digia at
its discretion deems appropriate, at Digia’s expense.

In jurisdictions where such authorization is not possible
under mandatory applicable law, the Licensor hereby
undertakes upon Digia’s request and at Digia’s expense, to act
jointly with Digia (as a co-plaintiff) in enforcing the Licensor’s
copyrights,[...]91

79 In line with Engelhardt’s assumptions that a non-
exclusive license does not per se confer standing in
a court of law, Digia expressly reserves the rights
to have standing to defend possible violations in a
court of law. Had Digia chosen a CAA, it would not
have had to make these rights explicit.

80 Digia thus assumes it can obtain the same rights
conveyed by an outright transfer of ownership
through a CLA if they are expressly listed therein.
Whether this is truly the case has not yet been tested.

81 It is also important to note that critics condemn far-
reaching CLAs to the same extent as CAAs elaborated
above. Although a CLA allows a contributor to
otherwise exploit the contribution, there is always
the danger of a single vendor abandoning the open
source project and leaving a developer with a part
to an unattainable whole. For CLAs it is therefore
equally important to include a clause stating that
any license grant takes place upon the condition that
the project will always remain under a free and open
source license.

IV. Outlook

82 From the aforesaid, one may conclude that there
is a variety of foundations/cooperatives and single
vendor open source businesses with contrasting
ethos using different CAAs and CLAs for differing
purposes.

83 Upon a closer look, however, it becomes clear
that despite having different agendas, parties of
contributor agreements generally have the same
aim: owners want to be able to perform all acts
exclusively reserved for copyright owners under
copyright law, i.e. copy, distribute, modify and
communicate to the public, but most importantly
they want to be able to re- and sub-license the code
to third parties, in some cases even under a different
outbound license, and to defend possible violations
in a court of law.

84 Developers in turn want to retain the right to use
the contribution in another project, possibly even
in a commercial application or even a patent, and be
sure that the open source project will always remain
under a free and open source license and not become
a victim of a business strategy change.

85 Since there is no accepted standard definition of
what a contributor agreement should contain in
order to have a particular effect, legal departments
constantly re-invent the wheel and draft contributor
agreements either based on outdated assumptions or
adventurous developments of the law. These reduce
the understandability and add to the confusion
and distrust of developers and their respective
employers.

86 It might thus be time to start thinking about a
standardization effort by means of an open source
contributor agreement platform, where interested
parties come together and decide what infrastructure
should underlie every contributor agreement. These
parties should include developers, project managers,
product managers and lawyers.

87 It should have a modular architecture, so that
interested parties could add individual conditions
and rights depending on their particular needs. All
of these modules would be endorsed by a legally
qualified committee, thus ensuring that the use of
a contributor agreement of said format would be a
qualitatively high legal document produced in the
transparency of the open source process.

E. Conclusion

88 To conclude, it is safe to say that the divide between
projects which use outbound as inbound and those
which actively manage intellectual property rights
is (currently) here to stay.

89 It would be tilting against windmills to try to
convince the unconviceable of using contributor
agreements of any sort. Neither the standardization
nor possible automatization of rights management
is in these projects’ interest as it would mean an
increased administrative burden, i.e. costs, which
would be difficult to raise.92

90 On the other hand, more and more projects have
an interest in being able to actively manage the
intellectual property of their contributions. Due
to the lack of a common standard, however, legal
departments constantly re-invent the wheel,
resulting in a very unhomogenous contributor
agreement landscape, prone to distrust and criticism.

91 The current paper thus proposes a standardization
effort, using the very same open source method to

2014

Sylvia F. Jakob

114 2

create an acceptable infrastructure for understand-
able and effective contributor agreements.

1 Perl Foundation, http://www.perlfoundation.org/, Linux
Foundation, http://www.linuxfoundation.org/, Mozilla
Foundation, https://www.mozilla.org/en-US/foundation/,
accessed 16 May 2014.

2 Busmaster of ETAS, http://www.etas.com/de/products/
applications_busmaster.php, accessed 16 May 2014.

3 Maracke, C., Editorial: Copyright Management for open
collaborative projects: Inbound Licensing Models for open
Innovation, Volume 10, Issue 2, August 2013, p. 143, http://
script-ed.org/wp-content/uploads/2013/08/editorial.pdf,
accessed 7 May 2014.

4 Maracke, C., Metzger, A., Concept Paper: Network of Stewards
for Free and Open Source Software projects, p. 2, http://
contributoragreements.org/wp-content/uploads/2013/05/
ConceptPaper_NetworkV9_Abstract.pdf, accessed 16 May
2014.

5 Famous examples constitute e.g. the Linux Kernel, Perl 5 or
the LLVM Project .

6 Much research on the topic is conducted in the field of
computer science and economics; see e.g. Riehle, D. Three
Positions on the Future of Open Source Research, p. 2, http://
dirkriehle.com/wp-content/uploads/2010/01/FOSS-2010-
Position-Paper.pdf, Controlling and Steering Open Source
Projects, IEEE Computer Society, July 2011, p. 94.

7 A full transcript of any given interview may be available upon
request: sylviafjakob@live.de.

8 Riehle, D., Friedrich – Alexander University of Erlangen
(Nürnberg, Germany).

9 Corbeth, J., Kroah-Hartman, G. & McPherson, A., Linux Kernel
Development: How Fast It Is Going, Who Is Doing It, What They
Are Doing, and Who Is Sponsoring It, A white paper by the
Linux Foundation, 2009, http://www.linuxfoundation.org/
sites/main/files/publications/whowriteslinux.pdf, accessed
14 May 2014.

10 https://groups.google.com/forum/#!msg/comp.os.minix/
dlNtH7RRrGA/SwRavCzVE7gJ, accessed 4 June 2014.

11 http://web.archive.org/web/20110721105526/http://
www.kernel.org/pub/linux/kernel/Historic/old-versions/
RELNOTES-0.12, accessed 4 June 2014.

12 Contreras, F., Why the Linux Kernel is the most important
project in history, http://felipec.wordpress.com/2011/03/06/
why-linux-is-the-most-important-software-project-in-
history/, accessed 16 April 2014.

13 17 U.S.Code § 201 c).
14 Linus as copyrightholder of the composite Linux Kernel:

http://yarchive.net/comp/linux/collective_work_copyright.
html, accessed 20 May 2014.

15 Discussion of Contributor Agreements between Linus Torvalds,
Greg Kroah-Hartmann & others on Google + on 20 January
2014, https://plus.google.com/111049168280159033135/
posts/NstZfwXbAti, accessed 2 April 2014.

16 17 U.S.Code § 201 c) other jurisdictions?
17 17Discussion of Contributor Agreements between

Linus Torvalds, Greg Kroah-Hartmann & others on
Google + on 20 January 2014, https://plus.google.
com/u/0/111049168280159033135/posts/NstZfwXbAti,
accessed 2 April 2014.

18 Dafermos, G., On the fourfold structure, http://p2pfoundation.
net/Linux_-_Governance, accessed 16th April 2014

19 http://opensource.org/licenses/Artistic-1.0, accessed 16 April
2014; see further Jacobsen v. Katzer for the enforceability of
the Artistic License, http://www.cafc.uscourts.gov/images/
stories/opinions-orders/08-1001.pdf, accessed 16 April 2014.

20 Large projects written in Perl include cPanel, Slash, Bugzilla,
RT, TWiki, and Movable Type; high-traffic websites that use
Perl extensively include bbc.co.uk, Priceline.com, Craigslist,
IMDb, LiveJournal, DuckDuckGo,Slashdot and Ticketmaster. It
is also an optional component of the popular LAMP technology
stack for web development, in lieu of PHP or Python; see
http://en.wikipedia.org/wiki/Perl, accessed 16 April 2014.

21 http://www.perlfoundation.org/how_tpf_works, accessed
16 March 2014.

22 Perl Foundation President, personal communication, August
2013.

23 http://en.wikipedia.org/wiki/Perl_6.
24 http://en.wikipedia.org/wiki/LLVM.
25 http://llvm.org/.
26 http://llvm.org/docs/DeveloperPolicy.html, accessed 16

April 2014.
27 Jaeger/Metzger, Open Source Software, Rechtliche

Rahmenbedingungen der Freien Software, 3. Auflage, Verlag
C.H. Beck, 2011, p.12.

28 See e.g. the court in Versata v. Ameriprise, p. 9 http://de.scribd.
com/doc/212507936/Versata-Software-v-Ameriprise,
accessed 16 May 2014.

29 See e.g. Lerner & Tirole, Some Simple Economics of
Open Source,THE JOURNAL OF INDUSTRIAL ECONOMICS
0022-1821,Volume L, June 2002 No., p. 201,202, http://
onlinelibrary.wiley.com/doi/10.1111/1467-6451.00174/pdf,
accessed 15 June 2013, Gonzales- Barahona, J.M., Robles,
G., Trends in Free, Libre, Open Source Communities: From
Volunteers to Companies, IT 55 (2013) 5, Oldenbourg
Wissenschaftsverlag, p. 173- 180, p. 174.

30 See e.g. http://www.pro-linux.de/news/1/11486/gericht-
skype-verletzt-die-gpl.html, accessed 16 May 2014.

31 Famous quote of Raymond, E.S.: “Given enough eyeballs, all
bugs are shallow” (Linus’ Law), in The Cathedral and the
Bazaar, 1999, p. 22

32 Where a strict copyleft license is used, for instance the AGPL,
the code cannot be incorporated into closed source products,
but many other business models can be pursued. Where a
weak copyleft outbound license has been used, for instance
the BSD license, any sort of commercialization is allowed.

33 Schaarschmidt, M., Bertram, M., Zerwas, D.&
Kortzfleisch, H., Kommerzialisierungsansätze in Open
Source Software Projekten, HMD, 283, p . 6-
16,p. 12, http://download.springer.com/static/pdf/209/
art%253A10.1007%252FBF03340658.

34 See e.g. AMQP.org, an alliance of blue chip companies that
developed an advanced message queuing protocol, which
was recognised as an international standard and does not
request CAs of any sort: http://www.amqp.org/, accessed 16
May 2014.

35 See e.g. the Apache License v. 2, http://oss-watch.ac.uk/
resources/apache2 or the BSD license http://oss-watch.ac.uk/
resources/modbsd, accessed 15 May 2014.

36 “At the General Assembly of KDE e.V. in August 2008 the
membership voted to adopt a Fiduciary Licensing Agreement
as the preferred form for assigning copyright to KDE e.V.:
http://ev.kde.org/rules/fla.php, accessed 24 June 2014.

37 http://bit.ly/1Bk5Vld
38 Metzger, A., Internationalisation of FOSS contributory

Copyright Assignments and Licenses: Jurisdiction-Specific or
“Unported”, SCRIPTed, Vol. 10, Issue 2, August 2013, p. 178-
206, p. 179.

39 Metzger, A., Internationalisation of FOSS Contributory
Copyright Assignments and Licenses: Jurisdiction-Specific or
“Unported”, SCRIPTed, Vol. 10, Issue 2, August 2013, p. 178-
206, p. 179.

 A Qualitative Study on the Adoption of CAA and CLA

2014 115 2

40 See e.g. § 29 German Copyright Law.
41 https://fsfe.org/work.en.html, accessed 14 May 2014.
42 https://fsfe.org/index.de.html, accessed 14 May 2014.
43 http://www.kde.org/, accessed 15 April 2014.
44 Former Board Member of KDE, Mirko Boehm,personal

communications, September 2013.
45 Ibid.
46 http://www.kde.org/download/distributions.php, accessed

12 May 2014.
47 http://ev.kde.org/resources/FLA-prefab.pdf, accessed 24

February 2014.
48 http://ev.kde.org/resources/FRP.pdf, accessed 24 February

2014.
49 http://ev.kde.org/resources/FLA-prefab.pdf, accessed 24

February 2014.
50 Legal Counsel, FSFE, personal communication, October 2013.
51 Engelhardt, T., Drafting Options for Contributor Agreements

for Free and Open Source Software: Assignment, (Non)
Exclusive Licence and Legal Consequences. A Comparative
Analysis of German and US Law, SCRIPTed, Volume 10, Issue
2, August 2013, p. 148-176, p. 164-65.

52 http://opensource.org/, accessed 14 March 2014.
53 Riehle, D., The economic case for Open Source Foundations,

IEEE, January 2010, p. 86-90, p. 88.
54 Barahona-Gonzales, J., Trends in Free, Libre, Open Source

Software Communities: From Volunteers to Companies, IT, 55
(2013) 13, p. 173-180, p. 175, Oldenbourg Wissenschaftsverlag.

55 http://projects.apache.org/, accessed 27 January 2014.
56 The standardization of the Java Portlet Specification 3.0 under

the sponsorship of IBM is being developed, at least in parts,
under the auspices of the Apache Foundation.

57 Personal communications with Java Portlet Specification
Manager, Martin Scott Nicklous, August 2013.

58 Riehle, D., Controlling and steering open source projects, IEEE
Computer Society, July 2011, p. 96.

59 https://www.apache.org/licenses/icla.txt, accessed 7 March
2014.

60 For those who are employed by a particular company, the
employer has to sign a Corporate CLA (CCLA): http://www.
apache.org/licenses/cla-corporate.txt, accessed 7 March 2014.

61 Personal communication with board member of the Apache
Foundation, Bertrand Delacretaz, August 2013.

62 Ibid.
63 https://www.apache.org/licenses/icla.txt, accessed 24

February 2014.
64 Personal communication with Apache board member

Bertrand Delacretaz, August 2013, and Django Foundation
President, Russell Keith- Maguee, October 2013.

65 Herdt, P., Konsortiale Software Entwicklung im Energiesektor,
http://www.osbf.eu/blog/konsortiale-open-source-
softwareentwicklung/im-energiesektor/#.U3ZGG1d-r6M, 26
November 2013, accessed 15 March 2014.

66 AUTomotive Open System Architecture, http://www.autosar.
org/, accessed 15 April 2014.

67 http://en.wikipedia.org/wiki/AUTOSAR, accessed 16 May
2014.

68 Herdt, P., supra, p. 6
69 Riehle, D., The commercial open source business model,

http://dirkriehle.com/publications/2009-2/the-commercial-
open-source-business-model/, accessed 18 November 2013.

70 Riehle, D., The single vendor Commercial Open Source Business
Model, Information Systems and e-Business Management
archive, Volume 10 Issue 1, March 2012, p. 5-17, p. 5.

71 Schaarschmidt et al., supra, p. 11.
72 See also Comino,S. & Manenti, F.M., Dual licensing in Open

Source Software markets, http://www.webmeets.com/files/
papers/EARIE/2009/244/CominoManenti_Dual_licensing.pdf,
accessed 10 May 2014.

73 See KDE supra.
74 ETAS, http://www.etas.com/en/index.php?langS=true&,

accessed 16 May 2014.
75 BUSMASTER, http://www.etas.com/en/products/

applications_busmaster.php?langS=true&, accessed 16 May
2014.

76 CAA, https://raw.githubusercontent.com/rbei-etas/
busmaster-documents/master/contributor_agreement_
entity.pdf, accessed 24 November 2013.

77 Personal communication with the product manager of
BUSMASTER, Dr. Tobias Lorenz, August 2013.

78 CAA, see note 73.
79 Personal communications with several stakeholders, August

– October 2013.
80 http://harmonyagreements.org/, accessed 14 February 2014.
81 http://contributoragreements.org/, accessed 16 May 2014.
82 Ibid.
83 http://development.contributoragreements.org/, accessed

16 May 2014.
84 Personal communication with economist/ IT consultant,

Joseph Potvin, Canada, August 2013.
85 https://www.openoffice.org/licenses/jca.pdf, accessed 16

May 2014.
86 Personal communication with IT student, Jens Kadenbach,

August 2013, backed up by http://www.cnet.com/news/
oracle-apparently-shuts-doors-on-opensolaris/, accessed 20
October 2013.

87 http://harmonyagreements.org/, accessed 16 May 2014.
88 http://qt-project.org/, accessed 16 May 2014.
89 http://www.digia.com/, accessed 16 May 2014.
90 http://www.digia.com/en/Home/Company/Press/2012/

Digia-to-acquire-Qt-from-Nokia/, accessed 16 May 2014.
91 http://qt-project.org/legal/

QtContributionLicenseAgreement.pdf. An interesting twist
in Digia’s licensing terms is the granting of “consideration”,
which turns the CLA prima facie into a sale; see ECJ in Usedsoft
v. Oracle, C 128/11).

92 Just think of the 500,000 Perl 5 developers.

