
2023

Philipp Lerch

108 1

All Agents Created Equal?
The Law’s Technical Neutrality on AI Knowledge
Representation

by Philipp Lerch*

© 2023 Philipp Lerch

Everybody may disseminate this article by electronic means and make it available for download under the terms and
conditions of the Digital Peer Publishing Licence (DPPL). A copy of the license text may be obtained at http://nbn-resolving.
de/urn:nbn:de:0009-dppl-v3-en8.

Recommended citation: Philipp Lerch, All Agents Created Equal? The Law’s Technical Neutrality on AI Knowledge
Representation, 14 (2023) JIPITEC 108 para 1.

Keywords: Product Liability; Product Security; Artifical Intelligence

ground of Product Liability law. It stands to reason
that using rule-based approaches may be prone to
stricter safety standards than approximative imple-
mentations.

Abstract: The term “Artificial Intelligence”
comprises different approaches. They can be roughly
divided into rule-based approaches and approxima-
tive machine learning. The author discusses the legal
implications of this technological choice on the back-

A. Introduction

1 A recent EU Commission’s proposal aims at
amending the legal framework on Product Liability
with specific adaptations for products employing
Artificial Intelligence technologies.1 It is part of a
major strategy of the European Union embracing the
fields of Product Security, Technology Regulation
and Contractual Liability, inter alia. The proposed
directive adapts “non-contractual fault-based civil
liability rules to artificial intelligence”.2 The most
eye-catching though unspectacular novelty is—not

* Philipp Lerch, Formerly Institute for Legal Informatics,
Saarland University.

1 COM(2022) 495 - Proposal for a directive of the European
Parliament and of the Council on liability for defective
products.

2 COM(2022) 495, Explanatory Memorandum 1.2.

surprisingly—the codification of the widely accepted
notion that software is indeed a product (Article 4,
para 1 of the Directive). The changes made appear
to be rather subtle (which is, simply put, a smart
decision disregarding those hyped voices who cannot
wait to introduce AI Law early enough as a fourth
major area of law). Interestingly the two major
concerns of what forms a defect (as the most central
term of Product Liability Law), and what justifies
exculpation are not extended by a fundamentally new
approach. Article 6, para 1 of the Directive amends
certain circumstances to take into account when a
defect is being ascertained:

2 “The effect on the product of any ability to continue
to learn after deployment” (lit. c) refers to what is
known as “development risks” of AI systems in the
debate. The effect on the product of other products
that can reasonably be expected to be used together
with the product” (lit. d) can be described as
interoperability which has already been set for the

All Agents Created Equal?

2023109 1

term of contractual defect.3 With lit. e the aspect
is taken into account that products may be kept
under control of the manufacturer via network
connection.4 Lit f) and g) state that product safety
requirements including cybersecurity, as well as
“specific expectations of the end-users for whom
the product is intended” are to be taken into account
which is nothing revolutionarily new to the doctrine
of Product Liability.

3 On the exculpation side the relevant Article 10, para 1
provides even less deviations from the current law.
The exemption ground of lit. e) is still central, which
allows exculpation if the defect could not have been
discovered due to the objective state of scientific and
technical knowledge at the time when the product
was put on the market.

4 One problem identified in the field of AI law is
whether self-learning systems, whose behaviours
change over time, are subject to liability also for
the adaptions that occur after the user has put the
product into operation.5 The novel directive surely
aims at solving this issue. However, it assumes that
most systems’ algorithms do not evolve in the hand
of the user. In principle, a computer software can
(somewhat) solve any problem either by coding it
to explicitly implement algorithms or by “training”
how to solve it. This touches even more fundamental
issues that are not tackled by the Directive at all. It
goes to the heart of a Product Liability legal regime
and touches specifically technical concerns: What
constitutes a defect? Was it avoidable? And if it was,
was it also discoverable?

5 A manufacturer may make use of machine learning
techniques instead of coding the system’s behaviour
explicitly. The most illustrating examples for this
can be found in the field of autonomous vehicles.
There is ongoing research regarding so-called
“end-to-end” approaches for autonomous vehicle
control.6 Instead of classical modular development

3 Directive (EU) 2019/771 of the European Parliament and of
the Council of 20 May 2019 on certain aspects concerning
contracts for the sale of goods, amending Regulation (EU)
2017/2394 and Directive 2009/22/EC, and repealing Direc-
tive 1999/44/EC, OJ L 166 0f 22 May 2019 (“SGD”), Art 2(5)(b).

4 “The moment in time when the product was placed on the
market or put into service or, where the manufacturer
retains control over the product after that.”

5 Ebers, „Autonomes Fahren: Produkt- und Produzenten-
haftung“, in: Oppermann and Stender-Vorwachs, Autonomes
Fahren. Rechtsfolgen, Rechtsprobleme, technische Grundlagen, p
34 ff.

6 For instance, see Rausch et al, “Learning a Deep Neural Net
Policy for End-to-End Control of Autonomous Vehicles”,

of the vehicle, a single machine learning model
is trained on the entire driving functionality like
steering, object and lane detection, path planning,
and control.7 In such a framework information about
the outer world (“knowledge”), particularly the way
a vehicle ought to behave, is not being provided
explicitly to the vehicle. Instead, it is being implicitly
induced by the training data, that could be obtained
by a human driver in operation.

6 The classical way autonomous vehicles are being
constructed is different: expert and world knowledge,
particularly traffic rules are being explicitly coded.8
They serve as explicit constraints over other modules
that make use of machine learning algorithms.

7 I will call the latter approach “explicit rule based”.
World knowledge leading to an agent’s behaviour
is being explicitly represented and the system
operates directly on it. The former approach is
the “implicit” machine learning approach. The
agent’s behaviour results from the induction of
rules (implicitly represented in the system) from
a given set of data. The choice of whether to use
either of the methods also affects the widely-known
postulate of transparency (problem of opacity):
many machine learning techniques suffer from poor
interpretability, known as the black box problem.

8 Unfortunately, there has not been active research
on the legal consequences of this choice. Is the
law technically neutral on this question? Another
EU proposal, the famous AI Act9, has been overtly
called “technically neutral”.10 Technical neutrality
means that the law is not per se preferring one
technical approach to another in a specific domain,
neither it is imposing a specific regime on any
technical solution. Recent legislation is being called
“technically neutral” as the regulators may have
explicitly enumerated the (almost) entire set of

2017 American Control Conference (ACC) (24-26 May 2017).

7 Rausch et al, “Learning a Deep Neural Net Policy for End-
to-End Control of Autonomous Vehicles”, 2017 American
Control Conference (ACC) (24-26 May 2017).

8 See for instance the implementation of the autonomous
vehicle “Bertha”: Ziegler et al, “Making Bertha Drive - An
Autonomous Journey on a Historic Route”, IEEE Intelligent
Transportation Systems Magazine, 6 (2), pp. 8-20, 2014.

9 Proposal for a Regulation Of The European Parliament And
Of The Council Laying Down Harmonised Rules On Artificial
Intelligence (Artificial Intelligence Act) And Amending
Certain Union Legislative Acts (COM/2021/206 final) (AI
Act)

10 Memorandum to the AI Act, p. 8; Geminn, “Die Regulierung
künstlicher Intelligenz“, ZD 2021, 354.

2023

Philipp Lerch

110 1

possible technical approaches. The AI Act explicitly
names both machine learning, logic, and knowledge-
based approaches; statistical ones have also been
mentioned as forms of artificial intelligence.11

9 These explicit regulatory considerations are at the
front of recent technological developments. General
German Private Law relies on statutes given in the
German Civil Code. It had been enacted in 1900. It
provides the fundamental rules of private law, which
means particularly contracts and liability rules (e.g.
torts). One may claim that—given the technological
developments in the last 100+x years—the German
Civil Code is technology neutral by design: it does
not pose any explicit restriction on technologies to
be used—particularly not on Artificial Intelligence.

10 However, the general structure of legal doctrines
may affect different technical approaches in a
different manner. Law and Economics scholarship
has studied the effects that legal doctrine can have
on society, in particular by providing a framework
to enforce contracts and property rights effectively.
Similarly, Law and Technology as well as Law and
Innovation studies extended this approach to study
the interaction between these fields.

11 Building on a Law and Technology approach, we
study the effects of the liability regime on the choice
between adopting a smart product on explicit rule
representations and making use of machine learning
methods.

12 We show that correctness as a desiderate of software
engineering and the ‘defect’ in the legal sense are
distinct. However, when safety-relevant features
of a product are concerned, correctness of a
software system is de facto the obliged outcome. If
instead the manufacturer chooses to use Machine
Learning technologies, thus merely approximating
the desired outcome, the law may yield certain
degree of inaccuracies. Finally, the question arises
whether the law may dictate the use of explicit rule
representations in cases where a certain output or
behaviour is asserted or minimal guarantees hold.

11 In detail Geminn, “Die Regulierung künstlicher Intelligenz“,
ZD 2021,354. This commission states that these provisions
are technology neutral: COM(2021) 206 final, 12: „as tech-
nology neutral and future proof as possible“.

I. Two Tier-Perspective on
Autonomous Agents

13 There are two perspectives on Artificial Intelligence
as identified by Russell and Norvig: (1) the behaviour
of the agent and (2) the thought processes or reasonin.12

1. Behaviour

14 The behaviour of an agent can be simply defined as the
relationship between a certain input and the output.
By ‘output’ it is meant any result of calculation that
constitutes the agent’s functionality. The ‘behaviour’
of an agent is usually what is of directly relvant to
legal liability as the behaviour determines how the
agent interacts with the environment and thus may
be source of damage.

2. Reasoning

15 The reasoning corresponds with how a certain con-
clusion is being drawn.13 It determines the steps the
agent performs in order to ascertain the output. Any
computer programme may be seen as a conditioned
sequence of intermediate system states, and a con-
crete run of a system as an unconditioned sequence
of system states. They can be invisible to the user.

16 By “intermediate states”, I mean the sequence of
states in between the output and input states. By
evaluating the single steps taken by the agent, results
might be traced and thus proven and explained.14
This is invariant of the technology used. In classical
algorithms, a sequence of system states is defined by
the program flow. This is no different when machine
learning comes into play. In neural networks, the
latent space matches the single intermediate steps
in the computation; in each layer there is some
different representation of the input data which one
may call a kind of interim result.15

12 Russell and Norvig, Artificial Intelligence. A modern approach
(3rd Edition 2016), pp 1-2.

13 In logic, reasoning is being done by inference: propositions
are being inferred according inference rules from a certain
knowledge base: Russel and Norvig (fn 11), p 235.

14 For instance, the Hoare logic offers a formal-mathematical
tool to prove an output (a postcondition) given a certain in-
put (a precondition): Hoare, “An Axiomatic Basis for Com-
puter Programming”, 12 (10) Communications of the ACM,
576.

15 Cf. Lassance et al, “Representing Deep Neural Networks

All Agents Created Equal?

2023111 1

17 These two conceptual tiers correspond with the
terms of “specification” and “implementation”. The
specification of a system determines the outer be-
haviour given a certain input. The implementation
determines the exact way a certain specification is
being realized.

II. The Term Correctness of
a Computer System

18 In Computer Science and Software Development,
the term “correctness” refers to a behaviour of a
computer programme. A computer system is correct
if—given a certain input and certain preconditions
in the state space—the specified preconditions
hold, particularly the expected outcome.16 The
specification is a formal or informal description of
what behaviour a computer programme is supposed
to have.17 Usually the term “specification” refers to
both the requirements specification and the design
specification. The first comprises the description
of product behaviour in regard to the customer’s
needs. The latter is a more fine-granular description
of the different components, modules, and interfaces
(subsystems) of the system. Both are not representing
the way how to achieve things, but what to achieve.

19 Functional requirements and non-functional
requirements are still being distinguished on the
specification side.18 The functional requirements
encompass that relation between input and output,
respectively preconditions and postconditions. They
describe the main functionality of the software. On
the other hand, the non-functional requirements
concern side-conditions, such as certain security
standards, performance, etc.19

Latent Space Geometries with Graphs” <https://arxiv.org/
abs/2011.07343>

16 Cf. Dennis, ”The design and construction of software sys-
tems” in Bauer et al (eds.), Software Engineering. An Advanced
Course, p. 22 “correctness of its description with respect
to the objective of the software system as specified by the
semantic description of the linguistic level it defines” The
“description” in this sense is the code that describes the
computer behaviour. The “objective” is what one can un-
derstand as the core of specification.

17 Schmidt, Software Engineering. Architecture-driven Software De-
velopment (2013), pp 93-111. Bauer et al, Software Engineer-
ing. An Advanced Course.

18 Cf Dick et al, Requirements Engineering, p. 172.

19 Critical discussion on this term in Glinz, On Non-Functional
Requirements, 15th IEEE International Requirements Engineering
Conference (RE 2007) DOI 10.1109/RE.2007.45.

20 The implementation is the actual realization of the
system, i.e., the concrete computer programme. The
computer programme determines not only what be-
haviour a system may have (prescribed by the speci-
fication), but also it consists of concrete instructions
to the system environment about how this behaviour
shall be accomplished.20

21 Thus, on the one hand, from a Software Engineering
internal perspective, the correctness is being assessed
just by matching the implementation with the
specification. From an external perspective on the
other hand, a software product may be considered
“sensible”, “proper”, etc. in regards to customer
needs.

22 As described above, the specification describes the
behaviour of an agent to its environment. The imple-
mentation is what constitutes the reasoning process,
thus behaviour is reached by a specific sequence of
instructions forming a certain sequence of states.

III. Implementation Approaches

23 Generally, there are two types of Artificial Intelli-
gence approaches distinguished: Rule-based systems
and Machine Learning methods.

1. Rule-based systems

24 Rule based systems belong to the group of “symbolic”
AI methods. Symbolic AI relies on the use of logic
and “ontologies” to represent knowledge.21 The
way behaviour is defined directly corresponds with
the concepts of the problem domain. Thus, a rule
“If A then B” can be directly represented using a
certain syntax, e.g. “A → B”, “IF A: B” etc. Ontologies
can refine concepts as “A consists of 1 and 2”, and
semantic web methods may represent complex webs
of relations between concepts.22 For instance, one
could represent legal rules symbolically by using

20 Imagine a programme that shall sort numbers in descend-
ing order. In first year computer science classes students
learn that there exist many different sorting algorithms
(Bubblesort, Quicksort, Mergesort etc.). All of them are dif-
ferent implementations of the same.

21 These are called „knowledge-based agents” in AI research.
Russell/Norvig, Artificial Intelligence, p 234.

22 For Semantic Web technologies used in the legal domain,
see Benjamins et al, “Law and the Semantic Web, an Intro-
duction”, in: Benjamin et al (eds), Law and the Semantic Web.
Legal Ontologies, Methodologies, Legal Information Retrieval, and
Applications, pp. 1 – 17.

2023

Philipp Lerch

112 1

a deontic logic, e.g. stating that somebody who
murders another human being ought to be punished:

Murderer(x) → O(Punished(x))

25 If x is a murderer, he ought to be punished. It is
clear to see that this representation of legal domain
knowledge somewhat maps with the real life con-
cepts behind it. In a rule-based system, therefore,
behaviour of a computer system is being described
explicitly. The language in which rules are being de-
scribed matches the concepts of the problem domain;
the domain-level concepts are being translated di-
rectly into logic-level names as predicates, functions,
and constants.23 The semantic model of the logic in-
volved determines the truth of an individual sen-
tence (rule) described.24 The model thus maps the log-
ical formalism (syntax) to the real-world concepts
and the truth of sentences in the real domain.25

26 For correctness of such approach twofold conditions
need to be satisfied. Firstly, the rule engine, i.e. the
component that translates the rules into executable
instructions, needs to be correct.26 This encompasses
both syntactic and semantic correctness; particularly
the rules must be consistently interpretable.27

27 Secondly, the rule definitions themselves must be
correct, thus leading to the correct behaviour of a
system, given the rule translator works correctly. This
means that rules shall conceptually map the problem
domain the system is meant to represent.

28 However, there is non-determinism posing a prob-
lem because of the input/output operations of the
autonomous system: the correctness property just
implies that the programme meets certain post-con-
ditions given a certain input meeting the pre-condi-
tions. Neither it can be in any way logically proven

23 For first-order logic rule representation Russell and Norvig,
Artificial Intelligence, p 290.

24 Russell and Norvig, Artificial Intelligence, p 232.

25 The theoretical term model originates from logic to theorize
the idea of semantic within formal systems. In Artificial In-
telligence and Machine Learning, a model is something dif-
ferent: It is closer to the colloquial meaning of a model as an
approximation of reality. However, they are related in the
way that also a logical model is mapping reality semantics
onto the finite syntax.

26 This maps what Dennis (fn. 15), p. 24 demands that for “host
level descriptions […] that are the result of automatically
translating the designer’s description, proving the correct-
ness of the translator suffices.”

27 See Morscher, Normenlogik (Paderborn 2012), p 117 ss for
consistency in model theory.

that a person interacting with the agent meets the
precondition of the system with their input, nor is
it any possible to prove this for other input/output
periphery as sensors. Reliability cannot be ensured
in unreliable host environments.28 Arbitrary changes
in the circuits may inevitably happen and thus can
lead to an error occurring.29

2. Machine Learning

29 Machine Learning relies on the idea that a certain
model structure is parametrized and these param-
eters are being induced by a learning process.30 The
most common structure in modern machine learn-
ing is Artificial Neural Networks (ANNs). They are a
layered architecture consisting of several compu-
tational layers, in which each layer is a linear com-
bination of the previous layers, with some non-lin-
ear activation function applied on each output of
the respective layer.31 Whilst any neural network
of the same architecture practically does similar
steps, what constitutes the network solving a spe-
cific problem are the parameters (often referred to
as ‘weights’): in a simple ANN they are the real num-
bers that—simply spoken—determine the flow ratio
of neurons of the previous layer to each of the neu-
rons in the next layer.

30 This is a highly general and abstract way to solve
a problem: the same general architecture can
be trained to a theoretically infinitely high set of

28 Dennis (p. 24) calls this aspect ‘reliability’ in contrast to the
correctness: A system is reliable if it may perform its func-
tions in spite of any host system failure. A system cannot be
entirely reliable if the host system may be fallible (p. 25).

29 It is suspected that cosmic rays may sometimes affect cir-
cuitboards and can randomly change the state of computer
systems, see e.g. Ziegler, “Effect of Cosmic Rays on Computer
Memories”, [1979] 206 Science 776-788. It stands to reason
that a certain degree of unreliability of computer systems is
inevitable.

30 When talking about Machine Learning, a model is a combi-
nation of a certain shape of a network and their parameters.
An architecture describes the principal ideas the model
structure follows: For instance, sequences of input can be
processed by Recurrent Neural Nets (RNNs), where the out-
put of a model is ‘plugged’ back as a model input itself.

31 A linear combination is simply a somehow weighted com-
bination (1,1,1) as can be calculated as linear combination
with the weights (5,2,1) to (1*5+2*1+1*1)=5+2+1=8. Applied
to n different weight vectors, one can create n different new
values, which are output of the next layer.

All Agents Created Equal?

2023113 1

problems, if enough training data is available. It can
be proven that ANNs are universal approximators.32

31 However, the major shortcoming in practical use is,
that it is difficult to explain what is exactly going on
in the middle of this network, the so-called latent
layers (as they are ‘hidden’ in the middle of the
network). Nor can one prove properties of a neural
network in general. This is often referred to as the
“black box problem” of neural networks: whilst
certain behaviour can be validated by testing, latent
states (representing the reasoning process steps)
are difficult to impossible to interpret.33 The issue
of “Explainable AI” is a current research issue, where
these restrictions are aimed to be diminished.34

32 The most important property of these techniques is
that they are merely approximative.35 They will not
be correct in the sense that they would always meet
the right result given an input, if not all possible
inputs have been tested. Testing every possible input
will not be possible in most domains. Just imagine an
autonomous vehicle that may be confronted with a
sheer vast amount of possible traffic situations and
their combinations.

3. Neuro-symbolic Integration

33 Several hybrid methods are aiming at combining
both approaches to each other. They are known
under the name “neural-symbolic integration”.
Essentially, networks may be used for for reasoning
tasks and context understanding. Symbolic
knowledge representations may be fed into a
network, upholding certain properties of syntactic
equivalence of the input logic.36 However, if these
architectures remain approximative approaches,
they are neither provable nor totally correct.

32 Alpaydin, Introduction to Machine Learning. (4th edn, 2016), p
99.

33 Cf. Alpaydin (fn. 32), p 155.

34 Gunning et al, ORCID: 0000-0001-6482- 1973,. XAI-Explainable
artificial intelligence. Science Robotics, 4(37). DOI: 10.1126/
scirobotics.aay7120.

35 Cf. the ‘probability risk’ of artificial intelligence identified
by Zech, “Liability for autonomous systems: Tackling
specific risks of modern IT”, in Lohsse et al., Liability for
Robotics and in the Internet of Things.

36 E.g. Lamb et al., “Graph Neural Networks Meet Neural-
Symbolic Computing: A Survey and Perspective” <https://
arxiv.org/abs/2003.00330>.

B. Normative Knowledge vs.
World Knowledge from
a Legal Perspective

34 Before assessing the issue in more fine granular de-
tail, we want to shortly discuss the importance of
different types of knowledge that are to be repre-
sented in a system.

I. Knowledge Types

35 When talking about knowledge in context of AI
systems, a rough distinction may be made between
world knowledge and normative knowledge.37 World
knowledge is the set of propositions about the
being, thus any states of or actions in the world.
Normative knowledge is the knowledge about how
the world ought to be; it can represent ethical or legal
postulates.

36 From a mere information representation perspective,
this distinction does not make a difference per se.38
This is different in law itself. In criminal law, an
important distinction between world knowledge
and normative knowledge can be made. Whilst most
criminal offences require an intention or knowledge
of the factual circumstances that constitute the
offence (“Vorsatz”, mens rea), there is the principle
“ignorantia juris neminem excusat”.39 According
to the German Criminal Code, ignorance of the
unlawfulness of an offence committed may only
exculpate a defendant not guilty if the ignorance
was not avoidable.40 Regularly, there is everybody’s
obligation to obtain legal advice on acts whose
legality is doubtful.

37 On the other hand, in private law (contracts and
torts) an intention or knowledge of a wrongdoing
is—according to legal scholarship as well as jurisdic-

37 A finer distinction is made in Valente, “Use and Reuse of
Legal Ontologies in Knowledge Engineering and Informa-
tion Management” in Benjamins et al., Law and the Semantic
Web. Legal Ontologies, Methodologies, Legal Information Retrieval,
and Applications, p. 71: They distinguish between different
knowledge on the legal side. However, for the purpose at
hand the more rough distinction will suffice.

38 However, Deontic (normative) Logic languages pose
different issues on Computer Science than other logical
systems. They do not touch the ways of representing, but of
operating on them.

39 Ignorance of the law does not pose a defence; see Jackson,
Latin for Lawyers II, (2014), p 166.

40 Section 117 German Criminal Code.

2023

Philipp Lerch

114 1

tion—considered to encompass both the knowledge
of the circumstances that constitute the wrongdo-
ing and its unlawfulness.41 This difference to crimi-
nal law may be explained by the higher complexity
of private law obligations; however it also stands out
that in private law, most legal norms do not even re-
quire intention or knowledge of the unlawful act, but
also let mere negligence suffice.42 So the distinction
is of less importance in private law.

38 For criminal law, the normative order imposes a
dense obligation on everyone to inform themselves
about the state of law. However, this becomes only
relevant if one behaves against the law. Whilst the
imagination of factual circumstances that fulfil the
requirements of a criminal offense can cause liability
for criminal attempt, the imagination of illegality of
a behaviour that is not criminal, does not.43

39 Normative knowledge thus can have different legal
implications than world knowledge. Put shortly, the
law assumes that everyone must know about right
and wrong, and failure to do so will not provide a
defence against liability for malice.

II. Implications for Technical Systems

40 In current legal orders, there is no liability of tech-
nical systems themselves; any knowledge that is re-
quired for liability needs to be present in the human
actors involved. For this constellation to occur, an
analogy to § 166 German Civil Code is proposed:44 If
an autonomous agent took a decision “knowing” a
certain fact (whatever this means for a computer
system), then the human the agent connected to it
cannot raise a defence of ignorance. This however
is not widely accepted.45

41 Cf. Müko-BGB/Grundmann § 276 Rn. 158 ff.

42 § 826 German Civil Code is one of the rare examples where
the law explicitly requires the intention or knowledge of
the unlawful harm that triggers liability.

43 A maniac offense (“Wahndelikt”) where the defendant just
imagined that his behaviour was criminal does not form a
criminal attempt and thus is not punishable. Joecks/Kulha-
nek, MükoBGB-StGB § 17 Rn. 38.

44 Recently Linke, „Die elektronische Person. Erforderlichkeit
einer Rechtspersönlichkeit für autonome Systeme?, MMR
2021“, 200 (with further references).

45 Against this, see only Cornelius, „Vertragsabschluss durch
autonome elektronische Agenten“, MMR 2002, 353 (355);
Grapentin, Vertragsschluss und vertragliches Verschulden beim
Einsatz von Künstlicher Intelligenz und Softwareagenten, 2018, S.
97.

41 For a machine there is no difference between “know-
ing” about the world and knowing about norma-
tive facts. It just behaves in the way it has been pro-
grammed. Thus, if active normative knowledge of
a machine would matter, e.g. if there would exist a
concept of malice done by a machine, there would
not be any incentive of a programmer or operator
to feed a machine with the normative knowledge
(as then this would bar the responsible person from
the defence of ignorance). The distinction between
the knowledge of right and wrong and other kinds
of knowledge should not be continued when consid-
ering autonomous agents from the legal perspective.

42 Generally speaking, the latent states of a machine
(see above) are of no importance when considering
the liability for a system. Only the behaviour mat-
ters. It does not matter why a machine takes a deci-
sion; both knowledge of fact and knowledge of norms
only touch the question of personal responsibility of
a human being. As long as computer systems them-
selves cannot be held accountable there is no need
to distinguish between normative knowledge and
world knowledge in autonomous agents by law. This
does not mean that this distinction does not pose en-
gineering problems when attempting to operate on
formalized normative knowledge, i.e. by use of de-
ontic logic.

C. Technical Correctness and
Normative Standards

I. “Defect” in Product Liability

43 In the heart of the Product Liability Law regime
lies the term “defect”. Eliciting the scope of the
term constitutes the remaining assessment of the
problem.

1. Different “Flavours” of Defects

44 The EU Product Liability Directive establishes a liabil-
ity for producers “caused by a defect in his product”.46
According to the definition given in the Directive, a
product is defective, “when it does not provide the
safety which a person is entitled to expect”, taking
into account the presentation of the product, the

46 Council Directive 85/374/EEC of 25 July 1985 on the approx-
imation of the laws, regulations and administrative provi-
sions of the Member States concerning liability for defec-
tive products (Short: Product Liability Directive), Art. 1.

All Agents Created Equal?

2023115 1

expected use of the product, the time the product
was put into circulation.47

45 It is acknowledged that this standard ought to be
objective.48 In the respective recital of the German
implementation of the Directive, it is explicitly stated
that it relies on the “expectations of the public”49,
which is to be concretised as the usual circle of ideal
users.50 This means it relies on the expectation of
the product’s target group. However, some call
the wording “expected safety standard” an empty
formula, as it did not make it any easier for courts
to ascertain the standard of safety.51

46 Jurisprudence has delivered more concrete formu-
las. For instance, the level of the product’s safety
standard to be expected is ascertained by an “ex-
haustive consideration”, taking into account the size
and scope of the dangers, the cost of safety measures
as well as further circumstances as the detectability
and avoidability of dangers.52 Generally, the manu-
facturer was only liable for security measures whose
cost was reasonably proportionate to their utility.53
This “risk-utility-test” is also the formula to deter-
mine the safety standard under U.S. law.54

47 For the separate types of defects, doctrine distin-
guishes between those of design, manufacture, and
instruction. When considering software systems,
on which it is at least partially acknowledged that
product liability law is applicable,55 it also consid-
ers how the safety standards connect with the term
“correctness”.

47 Product Liability Directive, Art. 6.

48 BeckOGK/Goehl, § 3 ProdHaftG Rn. 14.

49 BT-Drs. 11/2447, 18.

50 BeckOGK/Goehl, § 3 ProdHaftG Rn. 15.

51 MükoBGB/Wagner, § 3 ProdHaftG Rn. 7.

52 BeckOK-IT-Recht/Borges, § 3 ProdHaftG, Rn.8.

53 MükoBGB/Wagner, § 3 ProdHaftG Rn. 7; BGHZ 181, 253 Rn.
23.

54 Geistfeld, “A Roadmap for Autonomous Vehicles. A
Roadmap for Autonomous Vehicles: State Tort Liability,
Automobile Insurance, and Federal Safety Regulation”
(2017) 105 California Law Review 1611.

55 At least for embedded systems (software that has been
integrated into a physical good) this is acknowledged:
MükoBGB/Wagner, § 2 ProdHaftG Rn. 6. However, this
should not be discussed another time in this paper.

48 First, it is obvious that these terms are of different
meaning. By definition, a software is correct if
it matches the specification.56 Now, given the
specification also matches with the safety standards
demanded by law (including the safety standard
demanded by a reasonable and ideal user), a correct
software also fulfils the safety standards demanded
by law. In this case, one can state the presumption
that correctness is a prima facie condition for a
software to fulfil these safety requirements.

49 However, neither an incorrectness implies a defect
necessarily, nor follows from a defect in the legal
sense that the software is technically incorrect.
Literature restricts the term “defect” to features
that are “safety relevant”.57 This can be explained
by the purpose of Product Liability Law: there shall
not be an obligation to deliver an optimal product.58
Product Liability is about safety only. Therefore,
naturally not every incorrectness poses a defect.

50 On the other hand, a software may be completely
correct, but still not meeting the product safety
requirements. The flaw is therefore to be found in
the specification. It might be that the requirements
are itself “incorrect” or “flawed”. This only applies
to the “external” safety expectations that cannot
be systematically captured within the “internal”
development sphere that is only concerned with
matching the implementation with the specification.
Whereas, the flaw can be that needs have not been
sufficiently put into specification, which means that
the product does not fit the customer needs.59 From
an engineering perspective, it is to be said that all
customer needs are required to be taken into account
when eliciting requirements; they come in vague
statements from the persons in charge of eliciting
the needs.60 This will entail observing the market
and also the legal framework around this market,
particularly safety standards.

2. Is always correct software expected?

51 Imagine a judge examining a case of a potentially
flawed feature that is safety-relevant. Without
doubt, this leads to an application of the product li-

56 See above, p 5.

57 MükoBGB/Wagner, § 3 ProdHaftG Rn. 2.

58 BeckOK-IT-Recht/Borges, § 3 ProdHaftG Rn. 21.

59 In any requirements elicitation process the (abstract) needs
serve as “input requirements” to the next level of require-
ments elicitation. Dick et al (fn. 17), p. 33 ss.

60 Dick et al (fn. 17), p. 33 ss.

2023

Philipp Lerch

116 1

ability regime. The question then is whether every
incorrect implementation of a safety-relevant fea-
ture triggers liability. By the term incorrect I mean
that the specification of the feature is flawless; the
engineers in such a case correctly considered a fea-
ture that falls into the scope of the public safety ex-
pectation. The defect to be considered merely lies in
the wrongful implementation.

52 It is highly doubtable whether the public expectation
always demands software to be correct in the terms
stated above.61 Obviously, this cannot be determined
generally and depends highly on the requirements
of the domain. From an algorithmic perspective,
there are some problems that are so-called NP-
hard: a correct solution needs—from what theoretical
computer science’s complexity theory is at least
presuming—exponential runtime complexity.62
Thus, they cannot be practically solved correctly
as the runtime would be too high.63 An example is
the Traveling Salesman Problem (TSP), where the
shortest path in a graph is searched, that traverses
all nodes and finishes at the starting point.64 It cannot
be solved efficiently (which means in polynomial /
non-exponential time) whilst being correct. However
there exist heuristics, that do not guarantee an
optimal solution, but a reasonable runtime.65

53 Therefore, the public safety expectation (and this
is only what matters)66 cannot be an always correct
software, even in safety-relevant matters; if complex
problems are solved that can only be solved by
approximating algorithms, there cannot be claimed
a reasonable expectation of a correct software. Then,
however, testing needs to be done to a reasonable
extent.

61 Cf. BeckOK-IT-Recht/Borges, § 3 ProdHaftG Rn. 21; Taeger,
„Produkt- und Produzentenhaftung bei Schäden durch
fehlerhafte Computerprogramme“ 1995 Computer und
Recht 257, who stress that flawed software does not pose a
defect necessarily.

62 The “P=NP-Problem” is actually a Millennium Problem for
which the Turing Society offers a prize of One Million Dol-
lars. Solving this problem would go beyond the scope of this
essay. It may be solved in a further paper by the author. See
Goldreich, P, NP, and NP-Completeness. The Basics of Computa-
tional Complexity, p. 48 ff.

63 Goldreich (fn 61), p. 50.

64 Lin and Kernighan, “An Effective Heuristic Algorithm for
the Traveling-Salesman Problem” [1973] 21 (2) Operations
Research p 498-516.

65 Lin and Kernighan (fn 61).

66 BeckOK-IT-Recht, § 3 Rn. 21.

54 However, a manufacturer cannot always claim the
impossibility of a correct implementation. There are
cases where a product cannot be safely brought to
market, and thus shall not be issued at all.67

55 In parallel to this test, side-constraints posed by
legal rules and standards must also be taken into
account.68 For autonomous vehicles, the German
Traffic Code (Straßenverkehrsgesetz) imposes a regime
for the technical admission requirements. Thus, the
law specifies that any autonomous vehicle ought to
ensure the behaviour of a “risk-minimal” state: A
vehicle ought to set itself to a safe idle mode in a
safe position (§ 1 d para 4 StVG, § 1 e para 2 no 3),
or otherwise an infringement of traffic rules would
occur. This is an explicit minimal guarantee of the
product safety standard by law.69 It is to be further
discussed whether these minimal guarantees demand
a correct implementation or can be implemented by
approximation methods.70

3. Software Defects as Defects
of Design only?

56 From an engineering perspective, a system may be
either incorrect (i.e. its implementation does not
meet the specification) or suffer of poor specification
and thus the requirements are badly elucidated and
do not meet the customer needs. Generally, one
could speak of a defective product in this sense.

57 An issue however is to decide whether a defect
is legally a design or manufacturing defect. This
distinction is necessary as it determines the well-
known safety standard test: defects of design are
determined by actually applying the risk-utility test
while defects of manufacture on the other hand can
be proven by showing that the individual exemplar
suffers of a disadvantageous deviation from the
design plans.71 This is because the public may rely
on the specific properties of a product series.72 The
blueprints of a product thus pose a self-inflicted

67 BGH NJW 2009, 2952; BeckOGK/Goehl, § 3 ProdHaftG Rn. 15;
MükoBGB/Wagner, § 3 ProdHaftG Rn. 45.

68 MükoBGB/Wagner, § 3 Rn. 27 ff.

69 The term “minimal guarantee” refers to software specifica-
tion, in which the expected behaviour of a system or subsys-
tem is stated, disregarding of a successful or non-successful
execution of the component. See fn 101.

70 See below, p 19.

71 Wagner, AcP 217 2017, 707 (725 s).

72 BeckOGK/Goehl § 3 ProdHaftG Rn. 70.

All Agents Created Equal?

2023117 1

safety standard that may be stricter than the
objective standard matching the public expectation
applying in the case of a design defect.

58 A manufacturing defect is a disadvantageous
deviation of the product from the safety standard
imposed by the producer themself.73 In literature,
Wagner claims that manufacturing defects of
software only comprise wrongful delivery of software
to individual specimens of the product, mainly
relating to embedded systems.74 One can reasonably
doubt whether this perspective is entirely correct.
Wagner further claims that a software not meeting
the respective safety requirements was “per
definitionem” suffering of a production defect, as every
specimen of the product was affected.75 However,
public expectations may also arise from certain
specifications that represent standards shared
by several producers of software (interfaces). This
comes into play particularly when components are
delivered for end-user software products. Therefore,
unlike Wagner’s claims, incorrect software may pose
a production defect rather than a design defect if one
considers the coding as part of fabricating an end
product rather than just constructing it.

59 In the analog world, a defect of design may be con-
sidered as wrong blueprints. They can be regarded as
what specifications are for the manufacture of soft-
ware. If a software is incorrect as it was not matching
the specification, it is comparable to an item that has
not been produced according to the blueprints. It is—
from this perspective—a defect of manufacture. On
the other hand, a wrongful specification resembles
a defective blueprint. It stands to reason that—if the
manufacturing defect’s differentia specifica is the devi-
ation from the intended design76—incorrect software
deviating from the specification would have to be
regarded as suffering from a manufacturing defect.

60 This is particularly important when software
components are being delivered. The specification
fulfils a special task in multi-component software
systems. It defines the interfaces with which other
components may communicate with the respective

73 Cf. MükoBGB/Goehl § 3 ProdHaftG Rn. 70; discussed
by Hubbard, Sophisticated Robots: Balancing Liability,
Regulation, and Innovation, [2015] 66 Fla. L. Rev. 1803 (1854
ss).

74 Wagner, Produkthaftung für autonome Systeme, AcP 217 (2017),
707 (725 s).

75 Wagner (fn. 74), AcP 217 (2017), 707 (725 s).

76 Turner and Richardson, “Software defect classes and
no-fault liability.” UC Irvine. ICS Technical Reports.
Published 1999-04-05 p 16 <https://escholarship.org/uc/
item/11v8f8tc>.

sub-system or component.77 A component of a
software may be a product itself in the sense of
Product Liability Law.78 Now if a component promises
by specification to deliver service to another host
environment this specification serves as much as
a self-inflicted standard as a blueprint in a series of
fabricated goods does. Public expectations are then
subjectively formed by the intended design.

61 I do not want to argue out this issue; there may be
good arguments for not considering incorrectness
of software as defect of manufacture, certainly. It is
not just as simple as to refer to the argument of a per
definitionem nature of the implementation process. It
highly depends on the mapping of analogies from the
digital to the analogue. In literature it has therefore
been proposed—with similar arguments—a new type
of defect, the “generic manufacturing defect”.79

62 Finally, it cannot be predicted today that the pre-
vailing opinion on the nature of a bug will be seen
correctly as a manufacture defect, if the defect re-
lies on a deviation from publicly available interface
specification. I will thus assume for the purpose of
this study that incorrectness will lead to a defect of
design rather than manufacture.

4. Proving versus Testing

63 To ascertain the quality of a software product, the
two main ways are proof and testing. A proof is a
mathematical (or other formal) procedure in which
the logical necessity is induced, that a software or
an algorithm returns the correct output (or sets the
machine into the specified state) given a certain in-
put.80 For this it is necessary to observe the soft-
ware’s code. Formal proving is considered more of

77 Foster and Towle, Software Engineering. A Methodical Appoach
(2nd Edition 2022), p 194.

78 § 2 Produkthaftungsgesetz regards as product also the items
that are part of another product. This relies on Art. 2 Prod-
uct Liability Directive. Similarly Art 3 Product Liability Di-
rective considers the manufacturer of a component as pro-
ducer.

79 Turner and Richardson (fn. 78), p 19 <https://escholarship.
org/uc/item/11v8f8tc>.

80 Dennis (fn. 76), pp 22 ff: “To prove correctness of a software
system or component, one establishes by logical deduction
that some description of the system or component asserted
to be correct by the designer is equivalent to the description
of the system or component expressed at the host level”.
The “description of the system or component asserted to be
correct” is none less than the specification.

2023

Philipp Lerch

118 1

a theoretical thing.81 Particularly, every computer
programme entails a sort of non-determinism, as a
software usually works in an operating system en-
vironment with a very large state space; the pro-
gramme calls input/output functions indirectly by
system calls to the operating system, and usually
user inputs are not foreseeable. In short: one can-
not make sure that the executing environment sat-
isfies all the preconditions specified.82

64 Furthermore, even in a very simple programming
language, it can be shown that the so-called
Turing-completeness leads to the undecidability of
certain properties of the code.83 The well-known
Halting Problem states that for no programming
language that enables loops or recursions (possibly
leading to infinite loops or recursions), there can
be a program that decides for all valid programs
whether this program falls into an infinite loop or
recursion. Thus, there will never be any algorithm,
software, or Artificial Intelligence that can cross
this logical barrier. However, this does not mean
that programmes cannot be written in a form that
enables a proof on their correctness. This process
just cannot be automatized.

65 Machine learning applications cannot be proven so
far; we would have to understand what is going on
inside of the model. Instead, only statistical margins
can be defined, that a machine learning system shows
a certain behaviour (given a certain input) with some
percentage of probability.84 This is done by means of
testing. The term binary term correctness may then
be replaced with scalar measure of performance of a
model. Therefore, a programme is either correct, or
it is not, tertium non datur, but it can be performing
well (by accuracy metrics, e.g.) more or less.

81 For instance, first year CS students are being taught the
Hoare Logic (fn. 13) to prove that certain conditions hold
given a certain preconditions by analysing the source code
of a programme.

82 This is being called a problem of “reliability” of a software
system: Dennis (fn. 15), pp 24 ss.

83 Enderton, Computability Theory (2011), pp 79-102.

84 Leupold et al., Münchener Anwaltshandbuch IT-Recht (4th edn
2021), 9.1 Rn. 12.

5. Impacts on Product Liability

a) Correct Boundaries of Decisions
and Training Procedures

66 Originating from American law, the consumer
expectations are being ascertained by a “risk-utility
test”.85 A product is thus to be considered defective
if it poses risks to the consumer that are not being
outweighed by the benefits.86 Marchant and Lindor
argue that this leads to a prohibitive effect of further
developments as every advantageous improvement
of the algorithms used can thus create liability,
as the benefits of implementing such a change
(particularly protecting human life, in the example
of autonomous driving) would outweigh the cost,
at least when highly valuables as life and body are
endangered.87 This would lead to basically any bug
imposing liability.

67 Geistfeld correctly objects that this argumentation
relies on the assumption that autonomous cars are
being explicitly coded by rule definition.88 Instead,
he distinguishes parts that concern “rules that
constrain or guide the machine learning, such as
coding that instructs the vehicle to always stop at
stop signs”89 and the parts that make use of machine
learning technologies.90 Only the former was subject
to a code-evaluation as proposed by Marchant and
Lindor.

68 First of all, it needs to be stated that—given Marchant
and Lindor are right with their claim—correctness
in the sense stated above would be a minimal
requirement for autonomous driving in regard to
executive driving functions that—from the German
perspective—represent safety-relevant features of an
autonomous car (given the behaviour demanded by
law was flawlessly specified). Thus, to avoid liability
a manufacturer has to carefully (mathematically)
prove both the rules’ correctness and correctness of
the piece of software that interprets the rules.

85 Geistfeld (fn. 85), pp 1642 s. In German law the Bundesgerich-
tshof has accepted this notion for their own adjudication.

86 Geistfeld (fn. 85), pp. 1642 s.

87 Marchant and Lindor, “The Coming Collision Between Au-
tonomous Vehicles and the Liability System”(2012) 52 (4)
Santa Clara Law Review 1321, pp 1334

88 Geistfeld (fn. 85), p. 1644.

89 Geistfeld (fn. 85), p. 1645.

90 Geistfeld (fn. 85), p. 35.

All Agents Created Equal?

2023119 1

69 If this is being restricted to the explicit “rules
that constrain or guide” the machine learning (as
Geistfeld claims), it remains that both correctness of
the machine learning routines themselves (training
algorithms) as well as subroutines enforcing certain
behaviour as layer on top of the learned behaviour
ought to be correct for evaluating the product as
defect-free.

70 Geistfeld does not go into the existence of meth-
ods that are in-between both approaches. They al-
ready have been introduced as “neuro-symbolic
integration”.91 Roughly, rule representations are be-
ing used to influence the training to converge into a
certain direction.92 The system itself remains how-
ever approximative.93 Therefore neuro-symbolic in-
tegration is not correct in the sense defined above. If
a manufacturer makes use of these approaches, it is
to claim that at least the rules injected into the ma-
chine learning model need to be correct, thus being
a valid representation of the specified behaviour.
This notion of correctness entails a very isolated, nar-
row view on the “linguistic level”94 of the rule def-
inition language, and not the behaviour of the en-
tire system. In this case also, sufficient pre-market
testing is the only means to decrease the risk of lia-
bility when using still-approximative “neuro-sym-
bolic integration”.

b) Escape to Approximations

71 Basically, developers of autonomous cars are free
to decide which technical approach is to be used.
However, when making use of machine learning
technology, this means that a manufacturer would
in fact opt out the explicit code evaluation done with
the liability test. Instead, they would opt for merely
ensuring sufficient pre-market testing rather than
a mathematical proof of correctness. However, this
may lower standards, as correctness of a software
will not be necessary. There could be a race to
the bottom of quality standards by an escape of
developers to mere approximations.

72 Thus, it is problematic that there can be an arbitrary
choice between the approaches. Approximative so-
lutions may only be acceptable if the risk-utility test
allows a system to be merely approximative—in the
case that a correct solution would be either too ex-

91 See above, p 8.

92 See above, p 8.

93 See above, p 8.

94 This is how Dennis defines a logical level of a software, on
which correctness applies: Dennis (fn. 15), p 14.

pensive to obtain or computationally intractable. If
the manufacturer opts for approximative solutions,
it is to make sure that the system had been suffi-
ciently tested, with regard to the risks it poses.95

73 If the manufacturer uses the explicit rule represen-
tation approach, the question is whether any coding
error (bug) would pose a defect that the manufac-
turer is liable for. This is being argued by March-
ant and Lindor who claim that given the risk-util-
ity test, in risky domains any bug would impose less
cost to remove than the risks to be expected if the
bug would remain in the system.96 This again would
carry a legal obligation for the manufacturer to en-
sure correctness of the explicit rule implementation,
regarding safety-relevant features. If certain behav-
iour is steadily specified, mere approximations to
achieve this behaviour will not suffice.

74 Moreover, the largest burden of debugging lies in
the identification of bugs. However that identification
costs are part of the trade-off between risk and
utility in the respective test to ascertain a defect is
doubtable: In the Directive97 there is a distinction
made between the identifiability of a defect and
the implementability of safety standards. Whilst
the question of implementation cost touches the
question of an expected safety standard,98 the non-
recognisability of a given defect is merely a defense
as provided by § 1 Abs. 2 Nr. 5 ProdHaftG.99 The
prerequisites of the defense of non-recognizability
of a defect are much stricter and do not admit a risk-
utility-test. It stands to reason that courts will never
consider a bug as not identifiable. According to the
“state of science and technology” a bug could always
be considered identifiable. And if a bug has been
identified, the effort it costs to solve it is marginal
most of the time. The risk always outweighs the
burden.

75 This leads to the proposition that, when using rule-
based approaches, it is possible that—due to the
strictness of the risk-utility test —making use of
explicit rule definitions may lead to higher liability
risk. The disproportionate cost to review code for
bugs may not help the manufacturer to argue a case

95 This is stressed by Geistfeld (fn. 85), p 1646.

96 Marchant and Lindor (fn. 87), p 1334.

97 See Council Directive 85/374/EEC of 25 July 1985 on the
approximation of the laws, regulations and administrative
provisions of the Member States concerning liability for
defective products, Art 7.

98 And thus is a question of § 3 ProdHaftG resp. Art. 7 lit e of
the Directive.

99 Cf. MükoBGB/Wagner, § 1 ProdHaftG, Rn. 52

2023

Philipp Lerch

120 1

for themselves in the course of the risk-utility test.
Therefore, when using explicit rule-based methods
to implement a software, the law will de facto require
correctness of this system, if they potentially affect
safety-relevant features. In particularly safety-
critical domains, most features are safety-relevant
indeed.

76 On the other hand, whether the cost of testing, when
using approximative machine learning approaches,
belongs to the cost of identification of a defect and
not the cost of implementation is doubtful. In any
case, the obliged scale of testing would depend on
the “state of science of technology” in the way that
the testing procedures need to be in accordance
with the state of the art of computer science, and
the scale of testing sufficient to ensure a reasonable
safety standard. This also depends on available
computational power.100 Testing therefore will
always remain imperfect, and no “perfectly” tested
system can be demanded by law (which would
mostly not be even possible). The latter case means
a necessary trade-off between the cost and benefit of
safety measures; this is a strong argument to position
the question of scale of testing (particularly how
many test runs and how much test data is needed) to
the less strict question of expected safety standard.

77 It seems therefore that by using machine learning
techniques, the manufacturers can avoid their
liability for correctness of a system; the law may
tolerate system failures for machine learning
systems more than if explicit rules have been used.
This appears to be an adverse effect as it might lead
manufacturers to escape strict code evaluation by
opting for approximative approaches!

c) Minimal guarantees and safeguards

78 An exception to the principle of free technical choice
may arise if the law demands that certain behaviour
should occur in any case, thus with a probability of
100 percent. For instance, Leupold and Wiesner assert
that the absence of “decision boundaries” may lead
to product liability.101 Geistfeld similarly recognizes
that in autonomous driving environments, there
would—at least—exist explicit “rules that constrain

100 Moore’s law states the monotonic, exponential growth of
transistor size and thus computational power (cf. Kurzweil,
The law of accelerating returns, <https://www.kurzweilai.net/
the-law-of-accelerating-returns>). Thus, the technical de-
velopments will also shift the standards for the adequate
scale of testing to more intense testing.

101 Leupold/Wiesner, 9.6.4, Rn. 26.

or guide the machine learning, such as coding that
instructs the vehicle to always stop at stop signs”102

79 With “decision boundaries” it is meant a fixed range
in which a system can autonomously decide but may
never go beyond these boundaries. An autonomous
car may be coded in the way that e.g. the Acceleration
module may not exceed a certain velocity. By our
nomenclature, this is rule-based coding rather than
machine learning as the behaviour will be explicitly
defined, and the cap of velocity not just be induced by
prior training data. Such boundaries may be imposed
by law or by technical standards, or just arise from
technical necessity. As rule representations, these
boundaries ought to be correct as well if they
concern safety relevant features.

80 Aside from that, there may be minimal guarantees to
be expected. This is behaviour that should in any
case hold and should be guaranteed by a system
even in case of operation failure.103 The German
regulations give an example of the admission of
autonomous vehicles. The law explicitly demands
that a system should

[…] set itself into a risk minimal state, if the driving
may only be continued with an infringement of
traffic rules.104

81 This kind of provision will also oblige the manufac-
turer to implement such a safeguard functionality;
legal safety requirements can be expected to be sat-
isfied by the public. Now the question would arise
whether the manufacturer could merely implement
this behaviour by training the system to behave this
way (which would mean as last resort before an in-
fringement of traffic rules, drive to the right and
stop!). Against this it can be argued that the law re-
quires such behaviour to be implemented correctly,
so that a mere approximation by machine learning
techniques would not suffice.

82 One may argue that the existence of a minimal
guarantee does lead to a legal obligation to ensure
that the asserted behaviour shall be triggered in
any case possible, thus with a probability of 100
percent given certain prerequisites. This could only
be achieved by explicit rule representation,105 as this

102 Geistfeld (fn. 85), p. 1644.

103 This is a term used by to set such behaviour of a computer
system within a Use Case; thus it originates from the re-
quirements elicitation phase: Cockburn, Writing Effective Use
Cases, p. 83.

104 § 1e II Nr. 3 StVG.

105 Of course, this 100 percent would be anyway conditioned on
full reliability of the host system.

All Agents Created Equal?

2023121 1

behaviour merely being induced by training data
would never be an optimal solution. However, whilst
it is possible to ensure correctness, reliability affects
the product behaviour as well. Reliability means a
stable system behaviour despite any hardware
or subsystem error. It stands to reason that an
autonomous driving system will always be prone
to hardware errors and thus the perfectly reliable
system does not exist.

83 One may say: At least, if there is no 100 percent
safety, one should at least expect optimal safety.
This would mean that a correct implementation of
the feature can be expected, and this would bar the
manufacturer from using approximative methods
for the feature.

84 Against this, it may be argued that such strict
standards do not apply to other, non-digital products.
For a conventional car, one would assert that its
brakes should be effective. Obviously, there is always
a probability that the brake fails, there cannot be
100 percent safety. Unlike computer code that works
in a conceptually perfect environment (correctness
assumes that the computer does what it is being
told to do), mechanical parts are not considered
to work in such a formal machine environment.
Why would a prerequisite of correctness be made
for certain features in a digital system, but not in
other, analogous system? The doctrine of risk-utility
test gives the answer to this question: because it is
usually feasible at proportionate cost. If the minimal
guarantee cannot be implemented effectively, the
system would be usually too risky to be published,
or an approximative solution would suffice.

85 This depends on the individual case matter. As a rule
of thumb one can state:

Features that are mandated by law to exist shall
be explicitly coded (by a rule).

86 Therefore, a manufacturer may not lawfully refrain
from explicitly representing guaranteed behaviour;
an arbitrary escape to approximative solutions
is not possible here. However, it is an individual
question of legal statute interpretation of the safety
standards demanded by law whether it imposes an
actual minimal guarantee on the manufacturer, or
just aims at ensuring a very careful consideration of
a certain safety aspect.

D. Regulatory Impact of the AI Act

87 Interestingly, one cannot find the term “correctness”
in the “AI Act” proposal. Instead the term “accuracy”
is used for postulating in Article 15, para 1 that
systems ought to achieve an “appropriate level of

accuracy“ (cf. Rec. 38, 47, 49). This wording appears
to imply that the regulator acknowledges the fact
that machine learning will only be accurate to a
certain degree, thus is restrained to approximations.
What is an appropriate degree of approximation,
remains unclear and will depend on the single case
as intended.

88 However, the transparency requirements of Article
13 para 1 of the proposed AI Act may impose a
stricter constraint on the design choice:

“High-risk AI systems shall be designed and
developed in such a way to ensure that their
operation is sufficiently transparent to enable
users to interpret the system’s output and
use it appropriately. An appropriate type and
degree of transparency shall be ensured, with a
view to achieving compliance with the relevant
obligations of the user and of the provider set out
in Chapter 3 of this Title.”

89 “Sufficiently transparent” sounds rigorous given
that interpretability of the state-of-the-art machine
learning technologies is still in its infancy. For
certain high-risk systems this might mean that only
explicit rules may be used so that the system can
output a reasonable explanation.

90 The manifest itself is even more generous in its
understanding of transparency:

“Users should be able to interpret the system
output and use it appropriately. High-risk AI
systems should therefore be accompanied by
relevant documentation and instructions of use and
include concise and clear information, including in
relation to possible risks to fundamental rights and
discrimination, where appropriate”106

91 It does not state that the user shall be allowed to in-
terpret from the latent space of the machine learn-
ing model what explainability is about from the
technical perspective. The manifest appears to let
documenting the caveats of a system suffice, par-
ticularly its approximative nature. This is the key
information that is needed in order to interpret
an approximative system’s output and to estimate
its significance. Whether this is enough to achieve
their intended goal remains questionable. Society
might still rely on non-transparent models while
being aware of the mere correlation-based stochas-
tical nature. The general idea of a mere disclosure
or information-based approach rather than sub-
stantive regulation would generally be welcome.
But then the Commission could not evade the ques-
tion of why it opted for the rather substantive reg-
ulatory approach for the rest.

106 Manifest of the AI Act rec. 47.

2023

Philipp Lerch

122 1

E. Contract Law – The Digital
Content Directive

92 Similar conclusions as for the product liability may
be made for the field of contract law. According to
the Directive, digital content providers are obliged
to fit the contractual requirements (subjective
requirements) as to functionality, compatibility,
interoperability, and other features.107 It demands
that beneath these subjective requirements the
product should be fit for the purposes for which
digital content or digital services of the same
type would normally be used, taking into account,
where applicable, any existing Union and national
law, technical standards or, in the absence of such
technical standards, applicable sector-specific
industry codes of conduct.108

93 It is important to stress that these requirements
are not restricted to safety requirements as the
product liability regime is. It goes beyond them and
also comprises any reasonable expectation of the
customer to get a fully functional product. To be
free of system failures is also a question of whether
the system is secure.109 In Information Technology,
a secure system needs to be reliant and available;
unreliance and unavailability may originate from
both software bugs as well as human manipulation.

94 Any code incorrectness that leads to system failure in
this sense may form a breach of contract. However,
there is no equivalent to defective production as
the measure is either by contract or inflicted by the
industry average. It is yet to ascertain whether a
risk-utility test will be applied.

F. Conclusions

95 Manufacturers should be aware that if they use
rules to represent knowledge and behaviour, they
ought to be correct! By making use of machine
learning techniques manufacturers may partially
avoid code assessment in the course of a dispute
and thus may diverge from a strict correctness
prerequisite. Then they simply need to provide
evidence for sufficient testing before the product
had been put on the market. However, a caveat is
formed by minimal guarantees to be implemented—
they ought to be implemented explicitly. If they are
not computationally tractable or just way too costly
to implement this can bar the manufacturer from

107 Article 7 lit a. Digital Content Directive.

108 Article 8 para 1 lit a Digital Content Directive.

109 Compare Recital 42 of the Digital Content Directive.

putting a product on the market. It seems that under
current liability law not all smart agents are created
equal; approximative solutions are not required to
be assessed as harshly as when explicit algorithms
are used.

G. Acknowledgment

96 The research leading to these results is funded by the
German Federal Ministry for Economic Affairs and
Energy within the project “KI Wissen – Automotive
AI powered by Knowledge”. The author would
like to thank the consortium for the successful
co-operation.

